
Journal of Internet Computing and Services(JICS) 2018. Apr.: 19(2): 43-48 43

Supporting Systematic Software Test Process in
R&D Project with Behavioral Models

☆

Hyorin Choi1 Jung-Won Lee2 Byungjeong Lee1*

ABSTRACT

Various artifacts that are produced as software R&D project progresses contain research plan, research report, software requirements

and design descriptions, etc. When conducting a software R&D project, it is necessary to confirm that the developed system has

implemented its research requirements well. However, various research results make it difficult to design appropriate tests. So, there is

a practical need for us to comprehensively handle the planning, execution, and reporting of software test for finding and verifying

information related to the research. In this paper, we propose a useful method for software test process in R&D project which supports

model based software testing. The proposed method supports automation of test design and generation of test data by explicitly

separating each step of System Under Test (SUT). The method utilizes the various models representing the control flow of the function

to extract the information necessary for testing the system. And it supports a systematic testing process based on TMMi and ISO 29119.

Finally, we show the validity of the method by implementing a prototype with basic functionality to generate test data from software

behavioral models.

☞ keyword : Software R&D Project, Test Support Tool, Model based Testing

1. Introduction

Various artifacts that are produced as software R&D

project progresses contain research plan, research report,

software requirements and design descriptions, etc. However,

it is difficult to design appropriate software tests by

analyzing a huge amount of R&D outcomes. It is necesaary

to efficiently verify the requirements of software produced in

R&D project. Thus, in this study we propose a method for

supporting software test process including test planning, test

execution, and test reporting, based on model based test[1]

1 Department of Computer Science, University of Seoul(Seoul), 02504,
South Korea

2 Department of Electrical and Computer Engineering, Ajou
University(Suwon), 16499, South Korea

* Corresponding author: Byungjeong Lee
[Received 16 October 2017, Reviewed 6 November 2016(R2 4
January 2018), Accepted 5 February 2018]
☆ This research was supported by Next-Generation Information

Computing Development Program (NRF-2014M3C4A7030504)
and by Basic Science Research Program (NRF-2017R1A2
B4009937) through the National Research Foundation of
Korea(NRF) funded by the Ministry of Science, ICT & Future
Planning.

☆ A preliminary version of this paper was presented at APIC-IST
2017 and was selected as an outstanding paper.

to overcome this diffculty in software R&D project. Also,

we introduce a prototype that implements basic functionnality

of the method to show the validity of the method. The

proposed method supports automation of test design and

generation of test data by explicity separating each step of

System Under Test(SUT). The method utilizes the various

models representing the control flow of the function to

extract the information necessary for testing the system. And

it supports a systematic testing process based on TMMi and

ISO 29119. The contribution of this study is as follows.

∙We propose a method to efficiently support software test

process in R&D project.

∙By automating test design and data generation, the cost of

performing software test is reduced.

Section 2 describes related studies, and Section 3 outlines

our method to support software test and describes the test

artifacts produced in software R&D proejct. Section 4

introduces a prototype system to show our method. Finally

we conclude in Section 5.

http://dx.doi.org/10.7472/jksii.2018.19.2.43

J. Internet Comput. Serv.
ISSN 1598-0170 (Print) / ISSN 2287-1136 (Online)
http://www.jics.or.kr
Copyright ⓒ 2018 KSII

Supporting Systematic Software Test Process in R&D Project with Behavioral Models

44 2018. 4

2. Related Work

Many studies have been conducted on how to perform test

process through tool support for systematic testing of the

developed system. B. N. Nguyen et al.[2] proposed

‘GUITAR’is a tool that supports test automation based on a

model that expresses the structure of all graphical interfaces

(GUIs) for users to operate the system. It is effective in

reducing the test cost in that it automatically tests all GUIs

that can be operated according to the given model. However,

this method cannot be used on a system without a GUI, and

there is a limitaion in that it is difficult to design a test for

detailed functions of the system such as a unit level test[1].

The ‘PLeTsPerf’tool, proposed by E. Rodrigues et al.[3],

assists developers in their testing activities by automatically

generating scenarios and data for the overall test execution of

the developed system. It also designs the test based on model

information, conducting pilot studies to define the necessary

information and to show an example. This method is similar

to our method in that it supports test design process based

on model information. However, it designs test scenarios

based on control activities of the researcher and does not

support automated generation of the test data. On the other

hand, there are related studies in terms of tools supporting

software test standards and processes for satisfying TMMi

maturity level [4-8]. K. Jin et al.[4] defined the criteria for

writing test plans and reports according to the software

development life-cycle. However, this method has limitations

in that it is difficult to specify the development artifacts

necessary for performing the test and does not deal with test

data generation. In this study, we extended the method of

[4][6] and defined it according to operating flow of our

system. S. Back et al.[5] proposed a method for generating

test data through a meta-heuristic algorithm based on UML

behavioral model. Our prototype extended the method of

[5,6]. The studies [7,8] presented a process to verify

documents and program in software R & D project.

However, they did not provide automation of test design and

generation of test data.

3. Supporting Systematic

Software Test

3.1 Overview

Software testing is a activity of ensuring that the functions

implemented in software work as designed. The test is

performed by executing all test cases on the actual system

and checking whether the expected results are obtained. As

the scale of the developed system increases, the cost of

manually designing tests for all functionalities implemented

by developers is very high[9]. In particular, systems

developed in R&D project often require high reliability.

However, domain experts have difficultis in obtaining

adequate expertise for software testing[10]. Since this means

a high increase in test cost, tools to support systematic test

are required to reduce the cost.

In this study, we propose a system that supports

systematic software test process based on standards such as

IEC 9126 and ISO 29119-2 in order to satisfy this

requirement. The proposed system is a component system

that supports software test in test framework of [11]. Fig. 1

illustrates relationships between other constituent system and

our system. Other systems involved are: RD Repository that

stores, resuses and manages all researchdocuments(RD)

produced during R&D projects, an expert system which

judges whether the research documents are wrritten well

according to the quality management standard such as ISO

26262, and document test manager which uses the expert

system to constantly verify the quality of research documents.

(Figure 1) System context

3.2 System Flow

The control flow of our system is as follows. It has three

phases : Test Planning, Test Specification, and Test Report.

Supporting Systematic Software Test Process in R&D Project with Behavioral Models

한국 인터넷 정보학회 (19권2호) 45

(Figure 2) System flow

Fig. 2 shows the technologies implemented in our system

according to the flow.

The different operations are performed at each phase and

the various artifacts are produced. This is described in the

following.

Phase 1: Test Planning

First, in Test Planning stage, task setting, strategy

formulation, and scheduling for software test are performed.

A list of tasks to be performed is chosen according to the

level of TMMi required for each project by applying a

process customization technique[12] based on ISO 29119

standard that specifies the work of the test process. Each task

of the list should be specified with the person responsible for

the task and the duration. The system shows the tasks in the

form of gantt chart. The outcomes produced through these

operations are maintained in each entry of SLTP(Software

Life-cycle Test Plan), which is described in Section 3.3.

Phase 2: Test Specification

When the previous test planning is completed, the test

specification stage proceeds. In this stage, it collects all the

information needed for the test design such as finding which

functional items to test, and identifying related outcomes

based on generated test plan. Collected information includes

behavioral models expressing control flow of system. Our

method automatically generates scenarios and cases that the

researcher actually needs to test the system according to the

test coverage. In addition, the relationships between these

development products, behavioral models, and test data are

maintained in a traceability information model. The

researchers use the data to execute the test. The necessary

information including relevant RD document, expected test

function, test goal, and strategy is provided through the

traceability information model. SLTS(Software Life-cycle

Test Specification) written in Phase 2 is based on the

generated test data, traceability information, and behavioral

models.

Phase 3: Test Report

The researcher performs the test by using the SLTS and

obtains the test results. SLTR(Software Life-cycle Test

Report) is generated by using the results. SLTR helps project

manager to make a decision by recording test data from

SLTS, the person in charge from SLTP, the result data, etc.

In particular, failed test cases will be written in Incident

Report, which is used as a data to judge the reason of failure,

type of defect, severity, etc. by utilizing the description of

the researcher. Also, since failed test cases mean that there

are defects in the system, they are considered again in the

test specification phase to deal with the defects through

feedback.

3.3 Test Artifacts

Table 1 summarizes test artifacts of each phase defined in

our method. SLTP in Phase 1 is a test plan according to

software development cycle. Target component in SLTP has

the functionalities to be tested. Task List is a list of tasks

obtained after customizing test process, and Test Strategy

includes overall test conditions such as functional constraints

to be satisfied, tools to be used, and work environment, etc.

Test Goal expresses quantitatively how much to perform the

test, such as the quality level to be satisfied.

(Table 1) Test artifacts

Phase Artifacts

1
Target Component Task List Test Strategy

Test Goal Member list Schedule

2
Model Information Established Strategy Condition

Test Data Result

3

Related Artifacts Evaluation Progress

Last Updated
Manager

Information
Comments

Supporting Systematic Software Test Process in R&D Project with Behavioral Models

46 2018. 4

SLTS in Phase 2 is a specification written according to

SLTP. It includes test data generated from the SUT’s

behavioral models and developmental artifacts, the

information of the relevant model, and test strategy set in

SLTP. Condition is a constraint to be observed. Result is a

result of applying the test data. SLTR in Phase 3 is a report

on test results. SLTP and SLTS in the previous phases are

Related Artifacts. Total result represents success or failure,

and unexecuted test cases, and Progress describes how

further the tests should be performed within test scope. Each

time the result is updated in SLTS, each attribute value of

SLTR must be changed, so record the update date and its

history. If tester creates a comment about tests they perform,

it can be output to the Incident Report form. Our system uses

the three mentioned artifacts to keep the information

generated in each operating stage in a database. SLTP and

SLTR are items that are generated one by one for each test

cycle in the development project, and SLTS can be variously

generated due to the function of the system under test, the

target coverage, and so on.

3.4 Comparisons

This section provides comparisons of this study with other

studies that support model-based testing. The comparisons

are performed by analyzing the following 4 Research

Questions(RQs).

RQ1. Does the system automatically generate test data?

RQ2. Is it independent of development language?

RQ3. Has this system built an integrated R&D testing

process?

RQ4. Does this system perform systematic support to

comply with test standards?

(Table 2) Comparisons

GUITAR

[2]

PLeTsPerf

[3]

MOS

[12]

TCG

[13]

Our

work

RQ1 P Y Y Y Y

RQ2 Y Y Y Y Y

RQ3 N N P P Y

RQ4 Y N N N Y

The studies for comparisons are ‘GUITAR[2]’ and

‘PLeTsPerf[3]’ introduced in Section 2. In addtion,

‘MOS[13]’ applying the search-based testing technique to the

Model based test(MBT) and ‘TCG[14]’applying the static

analysis technique are used. The notation used by

Shafique[15] was applied as the analysis result for each RQ.

The results of the comparions are summarized in Table 2.

Most studies have ‘Y’(Support) in RQ1 and RQ2. This is

because the purpose of applying model-based testing is test

automation and they are independent of development

language by using a freely expressible model for the system

in the test design. However, GUITAR[2] has ‘P’(Partially

Support) in RQ1 because it performs test design based on

GUI. It is impossible to generate test data of the system

without GUI. RQ3 and RQ4 are the strengths of this system.

Our method provides functions to comply with the integrated

test process according to research and development

procedures. And each task of the process is based on ISO

29119 and TMMi standard. GUITAR[2] and PLeTsPerf[3]

have ‘N’(Not Support) for RQ3, but MOS[13] and TCG[14]

support some of the testing process by supporting test plans

and automated design features. In case of RQ4, GUITAR[2]

complies with the standard workflow of the GUI test.

4. Prototype

In this section, we introduce a prototype of our system.

The prototype was developed using Java and run on the web

by using Apache Tomcat, a web hosting service. Also,

software requirement specification(SRS) and software design

description(SDD) based on UML models are used to generate

test data. Fig. 3 shows an example page of the prototype.

Details can be found in our website URL : http://

se.uos.ac.kr/s2/swtest. When developing the prototype, we

used open source libraries such as Spring Framework.

(Figure 3) A prototype

Supporting Systematic Software Test Process in R&D Project with Behavioral Models

한국 인터넷 정보학회 (19권2호) 47

5. Conclusion

In this paper, we proposed a method to support systematic

software test process that maintains relationships between

artifacts of software R&D project and automatically generates

test data based on UML models. We implemented it as a

prototype and showed the practical validity of the proposed

method. In the future, we plan to expand test artifacts and

domain standards to apply our method to projects in various

domains. We will also continue to add functionalities to

increase usability of our system.

References

[1] M. Utting, and B. Legeard, Practical Model -Based

Testing: A Tools Approach, Morgan Kaufmann, 2010.

[2] B. N. Nguyen, B. Robbins, I. Banerjee, and A. Memon,

"GUITAR: an innovative tool for automated testing of

GUI-driven software," Automated Software Engineering,

vol. 21, no.1, pp, 65-105, 2014.

[3] E. Rodrigues, M. Bernardino, L. Costa, A. Zorzo, and

F. Oliveira, "PLeTsPerf - A Model-Based Performance

Testing Tool," In Proc. Of IEEE International

Conference on Software Testing, Verification and

Validation, pp. 1-8, 2015.

https://doi.org/10.1109/ICST.2015.7102628

[4] K. Jin, S. Song, J. Lee, B. Lee, "Test Planning and

Reporting for Constant Monitoring of Software R&D

Projects," In Proc. of Korea Computer Congress, pp.

597-599, 2015.

[5] S. Back, H. Choi, J. Lee, and B. Lee, "Evolutionary

Test Case Generation from UML-Diagram with

Concurrency," In Proc. of International Conference on

Computer Science and its Applications, LNEE, vol.

421, pp. 674-679, 2016.

[6] H. Choi, J. Lee, and B. Lee, "Towards Supporting

Model based Software Test for R&D Project," In Proc.

of Asia Pacific Conference of Information Science and

Technology, June 2017.

[7] A. Dashbalbar, S. Song, J. Lee, B. Lee, "Towards

Enacting a SPEM-based Test Process with Maturity

Levels," KSII Transactions on Internet and Information

Systems, vol.11, no.2, pp. 1217-1233, Feb. 2017.

http://www.dbpia.co.kr/Article/NODE07121666

[8] A. Dashbalbar, E. Lee, J. Lee B. Lee, "Describing

Activities to Verify Artifacts(Documents and Program)

in Software R&D," Journal of Internet Computing and

Services, vo.17, no.2, pp.39-47, Apr. 2016.

https://doi.org/10.7472/jksii.2016.17.2.39

[9] D. R. Kuhn, V. Hu, D. F. Ferraiolo, R. N. Kacker, and

Y. Lei, "Pseudo-exhaustive testing of attribute based

access control rules," In Proc. of Software Testing,

Verification and Validation Workshops, pp. 51-58,

2016. https://doi.org/10.1109/ICSTW.2016.35

[10] H. J. Thamhain, "Assessing the effectiveness of

quantitative and qualitative methods for R&D project

proposal evaluations," Engineering Management

Journal, vol. 26, no. 3, pp. 3-12, 2014.

https://doi.org/10.1080/10429247.2014.11432015

[11] S. Song, A. Dashbalbar, J. Lee and B. Lee, "Test

Framework Requirements to Verify Artifacts in

Software R&D Project," International Journal of

Software Engineering and Its Applications, vol. 10, no.

11, pp. 83-94, 2016.

https://doi.org/10.14257/ijseia.2016.10.11.07

[12] D. Baek, B. Lee, and J. Lee, "Content-based

Configuration Management System for Software

Research and Development Document Artifacts," KSII

Transactions on Internet & Information Systems, vol.10,

no.3, pp. 1404-1415, 2016.

http://www.dbpia.co.kr/Article/NODE06647459

[13] E. P. Enoiu, K. Doganay, M. Bohlin, D. Sundmark, and

P. Pettersson, "MOS: an integrated model-based and

search-based testing tool for function blockdiagrams,"

In Proc. of International Workshop on Combining

Modelling and Search-Based Software Engineering, pp.

55-60, 2013.

https://doi.org/10.1109/CMSBSE.2013.6605711

[14] L. L. Muniz, U. S. Netto, and P. H. M. Maia, "TCG:

A Model-based Testing Tool for Functional and

Statistical Testing," In Proc. of International Conference

on Enterprise Information Systems, no. 2, pp. 404-411,

2015. https://doi.org/10.5220/0005398604040411

[15] M. Shafique, and L. Yvan, "A systematic review of

model based testing tool support," Technical Report

SCE-10-04, Carleton University, Canada, 2010.

Supporting Systematic Software Test Process in R&D Project with Behavioral Models

48 2018. 4

◐ 저 자 소 개 ◑

Hyorin Choi

2015 B.S. from Korea National University of Transportation, Korea

2017 M.S. from Computer Science at University of Seoul, Korea

Research interests: software engineering, software evolution.

Email : yoinoichr2015@uos.ac.kr

Jung-Won Lee

1993 B.S. from Ewha Womans University, Korea

1995 M.S. in Computer Science from Ewha Womans University, Korea

2013 Ph.D. in Computer Science from Ewha Womans University, Korea

1995～1997 Researcher of LG Electronics, Korea

2006～Present Professor of the Department of Electrical and Computer Engineering at Ajou University, Korea.

Research interests: context-aware, embedded software, software engineering

Email: jungwony@ajou.ac.kr

Byungjeong Lee

1990 B.S. from Seoul National University, Korea

1998 M.S. in Computer Science from Seoul National University, Korea

2002 Ph.D. in Computer Science from Seoul National University, Korea

1990～1998 Researcher of Hyundai Electronics, Korea

2002～Present Professor of the Department of Computer Science and Engineering at the University of Seoul,

Korea.

Research interests: software engineering, machine learning

Email: bjlee@uos.ac.kr

