DOI QR코드

DOI QR Code

Comparison of Landslide Susceptibility Analysis Considering the Characteristics of Landslide Trigger Points

산사태 발생지점의 특성을 고려한 취약성 분석 비교

  • Shin, Hyun Woo (Dept. of Civil Engineering, University of Seoul) ;
  • Lee, Su Gon (Dept. of Civil Engineering, University of Seoul)
  • Received : 2018.03.13
  • Accepted : 2018.04.27
  • Published : 2018.04.30

Abstract

This study examined the correlation among topography, forest type, soil and geology in Inje area where landslides occurred during heavy rainfall from July 11 to July 18, 2006 to assess the landslide susceptibility. In order to assess the susceptibility of future landslides, landslides occurred in Inje area were classified into slide type and flow type, and slope angle, aspect, curvature, ridge and valley were extracted from the area. The landslide susceptibility was assessed by applying diameter class, age class, density, and forest type to Bayesianbased LR (Logistic Regression) model and WOE (Weight of Evidence) model, and the fitness of modeling was verified by predict rate curve. As the results of susceptibility assessment, using all landslides without no distintion, it was found that 75% of the LR model and 73% of the WOE model were fit in terms of the top 20% of the landslides. According to slide type and flow type in the top 20% of the landslides, it was found that 71% of the LR model and 69% of the WOE model were fit in terms of the slide type. Whereas, it was found that 86% of the LR model and 82% of the WOE model were fit in terms of the flow type. That is, the results of the LR model showed higher fitness than the results of the WOE model, and the fitness of the flow type was higher than that of the slide type. Consequently, it suggests that it is reasonable to assess and verify the landslide susceptibility according to the types of landslides.

본 연구는 산사태 발생 취약성을 평가하기 위해 2006년 7월 11일부터 7월 18일까지 집중호우 시 다수의 산사태가 발생한 인제지역의 지형요인, 임상, 토질, 지질과의 상관관계를 분석하였다. 미래에 발생할 산사태의 취약성 평가를 위해 인제지역에 발생한 산사태를 활동형태와 흐름형태로 구분하고 지형에서 경사, 경사각, 곡률, 능선, 계곡을 추출하였다. 그리고 임상요인에서 경급, 영급, 밀도, 임상을 추출하여 베이지안을 기반으로 하는 LR 모델과 WOE 모델을 적용하여 연구지역 산사태의 취약성을 평가하고 예측비율곡선을 이용하여 적합도 검증하였다. 취약성 평가 결과의 적합도 검증 결과 산사태를 유형별 구분 없이 적용한 결과 상위 20%에서 LR 모델은 75%, WOE 모델은 73%의 적합도를 보이고 있으며, 활동형태와 흐름형태로 구별하여 검증한 결과 활동 형태는 상위 20%에서 LR 모델은 71%, WOE 모델은 69%의 적합도를 나타내고, 흐름 형태에서는 상위 20%에서 LR 모델은 86%, WOE 모델은 82%의 적합도를 나타내었다. 평가결과 적합도는 LR 모델 적용 결과가 WOE 모델 적용 결과 보다 높은 적합도를 보였으며, 활동형태 보다는 흐름형태의 적합도가 높게 나타났다. 이러한 결과로 보아 산사태 취약성 평가와 검증 시에는 기존의 연구 방법과는 달리 산사태 발생 예측 시 유형별로 구분하여 실시하는 것이 타당한 것으로 사료된다.

Keywords

References

  1. Aleotti, P. and Chowdhury, R. (1999), Landslide hazard assessment: summary review and new perspectives, Bulletin of Engineering Geology and the Environment, Vol. 58, No. 1, pp. 21-44. https://doi.org/10.1007/s100640050066
  2. Bonham-Carter, G.F. (1994), Geographic Information Systems for Geoscientist : Modeling with GIS, Oxford: Pergamon Press, London.
  3. Chung, C.F. and Fabbri, A.G. (1999), Probabilistic prediction models for landslide hazard mapping, Photogrammetric Engineering & Remote Sensing, Vol. 65, No. 12, pp. 1388-1399.
  4. Dahal, R.K., Hasegawa, S., Nonomura, A., Yamanaka, M., Masuda, T., and Nishino, K. (2007), GIS-based weights of-evidence modelling of rainfall-induced landslides in small catchments for landslide susceptibility mapping, Environmental Geology, Vol. 54, No. 2, pp. 311-324. https://doi.org/10.1007/s00254-007-0818-3
  5. Ermini, L., Catani, L., and Casagli, N. (2005), Artificial neural networks applied to and landslide susceptibility assessment, Geomorphology, Vol. 66, No. 1-4, pp. 327-343. https://doi.org/10.1016/j.geomorph.2004.09.025
  6. Guzzetti, F., Reichenbach, P., Ardizzone, F., Cardinali, M., and Galli, M. (2006), Estimating the quality of landslide susceptibility models, Geomorphology, Vol. 81, pp. 166-184. https://doi.org/10.1016/j.geomorph.2006.04.007
  7. KIGAM (2004), Development Landslide Risk Assessment System and Damage Mitigation Technology, M1-0324-00-0003-03-831-00-001-00, Daejeon, Korea, 288p.
  8. Kim, J.H. and Kim, W.Y. (2013), Review of research trends on landslide hazards, The Journal of Engineering Geology, Vol. 23, No. 3, pp. 305-314. (in Korean with English abstract) https://doi.org/10.9720/kseg.2013.3.305
  9. Lee, S. and Sambath, T. (2006), Landslide susceptibility mapping in the Damrei Romel area, Cambodia using frequency ratio and logistic regression models, Environmental Geology, Vol. 50, No. 6, pp. 847-855. https://doi.org/10.1007/s00254-006-0256-7
  10. Lee, S. and Talib, J.A. (2005), Probabilistic landslide susceptibility and factor effect analysis, Environmental Geology, Vol. 47, No. 7, pp. 982-990. https://doi.org/10.1007/s00254-005-1228-z
  11. Pradhan, B., Lee, S., Mansor, S., Buchroithner, M., Jamaluddin, N., and Khujaimah, Z. (2008), Utilization of optical remote sensing data and geographic information system tools for regional landslide hazard analysis by using binomial logistic regression model, Journal of Applied Remote Sensing, Vol. 2, No. 1, pp. 35-42.
  12. Suzen, M.L. and Doyuran, V. (2004), A comparison of the GIS based landslide susceptibility assessment methods: multivariate versus bivariate, Environmental Geology. Vol. 45, No. 5, pp. 665-679. https://doi.org/10.1007/s00254-003-0917-8