Acknowledgement
Supported by : National Natural Science Foundation of China
References
- Attar, P.J. and Dowell, E.H. (2005), "A reduced order system ID approach to the modelling of nonlinear structural behavior in aeroelasticity", J. Fluid. Struct., 21(5-7), 531-542. https://doi.org/10.1016/j.jfluidstructs.2005.08.012
- Awrejcewicz, J. (2013), "Large amplitude free vibration of orthotropic shallow shells of complex shapes with variable thickness", Latin American J. Solids Struct., 10(10), 149-162. https://doi.org/10.1590/S1679-78252013000100015
- Banichuk, N., Jeronen, J., Neittaanmaki, P. and Tuovinen, T. (2010a), "Static instability analysis for travelling membranes and plates interacting with axially moving ideal fluid", J. Fluid. Struct., 26(2), 274-291. https://doi.org/10.1016/j.jfluidstructs.2009.09.006
- Banichuk, N., Jeronen, J., Neittaanmaki, P. and Tuovinen, T. (2010b), "On the instability of an axially moving elastic plate", Int. J. Solids Struct., 47(1), 91-99. https://doi.org/10.1016/j.ijsolstr.2009.09.020
- Bisplinghoff, R.L., Ashley, H. and Halfman, R.L. (1955), Aeroelasticity, Addison-Wesley, New Jersey, America.
- Dowell, E.H. (1970), "Panel flutter: A review of the aeroelastic stability of panel and shells", AIAA J., 8(3), 385-399. https://doi.org/10.2514/3.5680
- Finnemore, E.J. and Franzini, J.B. (2001), Fluid Mechanics with Engineering Applications, McGraw-Hill Companies, New York, America.
- Forsching, H.W. (1982), Principles of aeroelasticity, Shanghai Science and Technology Literature Press, Shanghai, China (in Chinese).
- Ivovich, V.A. and Pokrovskii, L.N. (1991), Dynamic analysis of suspended roof systems, A.A. Balkema, Rotterdam, Netherlands.
- Kawakita, S., Bienkiewicz, B. and Cermak, J.E. (1992), "Aeroelastic model study of suspended cable roof", J. Wind Eng. Ind. Aerod., 42, 1459-1470. https://doi.org/10.1016/0167-6105(92)90153-2
- Kornecki, A., Dowell, E.H. and O'Brien, J. (1976), "On the aeroelastic instability of two-dimensional panels in uniform incompressible flow", J. Sound Vib., 47(2), 163-178. https://doi.org/10.1016/0022-460X(76)90715-X
- Li, Q.X. and Sun, B.N. (2006), "Wind-induced aerodynamic instability analysis of the closed membrane roofs", J. Vib. Eng., 19(3), 346-353 (in Chinese).
- Liu, C.J., Zheng, Z.L., Long, J., Guo, J.J. and Wu, K. (2013), "Dynamic analysis for nonlinear vibration of prestressed orthotropic membranes with viscous damping", Int. J. Struct. Stab. Dynam., 13(2), 60-66.
- Liu, M., Chen, X. and Yang, Q. (2016), "Characteristics of dynamic pressures on a saddle type roof in various boundary layer flows", J. Wind Eng. Ind. Aerod., 150, 1-14. https://doi.org/10.1016/j.jweia.2015.11.012
- Minami, H. (1998), "Added mass of a membrane vibrating at finite amplitude", J. Fluid. Struct., 1998, 12, 919-932. https://doi.org/10.1006/jfls.1998.0175
- Minami, H., Okuda, Y. and Kawamura, S. (1993), "Experimental studies on the flutter behavior of membranes in a wind tunnel." Space Structures 4, (Eds., G.A.R. Parke and C.M. Howard) Vol.1, Thomas Telford, London.
- Miyake, A., Yoshimura, T. and Makino, M. (1992), "Aerodynamic instability of suspended roof modals", J. Wind Eng. Ind. Aerod., 42, 1471-1482. https://doi.org/10.1016/0167-6105(92)90154-3
- Munteanu, S.L., Rajadas, J., Nam, C. and Chattopadhyay, A. (2015), "Reduced-order-model approach for aeroelastic analysis involving aerodynamic and structural nonlinearities", AIAA J., 43(3), 560-571. https://doi.org/10.2514/1.10971
- Rizzo, F. and Ricciardelli, F. (2016), "Design approach of wind load for Hyperbolic paraboloid roof with circular and elliptical plan", Eng. Struct., 139, 153-169.
- Rizzo, F. and Sepe, V. (2015), "Static loads to simulate dynamic effects of wind on hyperbolic paraboloid roofs with square plan", J. Wind Eng. Ind. Aerod., 137, 46-57. https://doi.org/10.1016/j.jweia.2014.11.012
- Scott, R.C., Bartels, R.E. and Kandil, O.A. (2007), "An aeroelastic analysis of a thin flexible membrane", Propulsion Conferences, 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, American Institute of Aeronautics and Astronautics (AIAA), Reston, VA.
- Shin, C.J., Kim, W. and Chung, J.T. (2004), "Free in-plane vibration of an axially moving membrane", J. Sound Vib., 272(1-2), 137-154. https://doi.org/10.1016/S0022-460X(03)00323-7
- Stanford, B. and Ifju, P. (2008), "Fixed membrane wings for micro air vehicles: Experimental characterization, numerical modeling, and tailoring", Prog. Aerosp. Sci., 44(4), 258-294. https://doi.org/10.1016/j.paerosci.2008.03.001
- Stanford, B. and Sytsma, M. (2007), "Static aeroelastic model validation of membrane micro air vehicle wings", AIAA J., 45(12), 2828-2837. https://doi.org/10.2514/1.30003
- Sun, B.N., Mao, G.D. and Lou, W.J. (2003), "Wind induced coupling dynamic response of closed membrane structures", Proceedings of the 11th Int. Conf. On Wind Engineering, International Association for Wind Engineering, Atsugi, Japan.
- Sygulski, R. (1994), "Dynamic analysis of open membrane structures interaction with air", Int. J. Numer. Meth. Eng., 37(11), 1807-1823. https://doi.org/10.1002/nme.1620371103
- Sygulski, R. (1997), "Numerical analysis of membrane stability in air flow", J. Sound Vib., 201(3), 281-292. https://doi.org/10.1006/jsvi.1995.0790
- Tang, D.M. and Dowell, E.H. (2015), "Experimental and theoretical study for nonlinear aeroelastic behavior of a flexible rotor blade", AIAA J., 31(31), 1133-1142.
- Uematsu, Y., Arakatsu, F. and Matsumoto, S. (2009), "Wind force coefficients for designing hyperbolic paraboloid free-roofs", Nctam Papers, National Congress of Theoretical & Applied Mechanics, Japan, 58, 175-175.
- Vassilopoulou, I. and Gantes, C.J. (2012), "Nonlinear dynamic phenomena in a SDOF model of cable net", Arch. Appl. Mech., 82(10-11), 1689-1703. https://doi.org/10.1007/s00419-012-0660-2
- Xu, X.P., Zheng, Z.L., Liu, C.J., Song, W.J. and Long, J. (2011), "Aerodynamic stability analysis of geometrically nonlinear orthotropic membrane structure with hyperbolic paraboloid", J. Eng. Mech., 137(11), 759-768. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000278
- Yang, Q. and Liu, R. (2005), "On aerodynamic stability of membrane structures", Int. J. Space Struct., 20(3), 181-188. https://doi.org/10.1260/026635105775213782
- Yang, Q.S. and Liu, R.X. (2006), "Studies on aerodynamic stability of membrane structures", Eng. Mech., 23(9), 18-24(in Chinese).
- Yang, Q., Wu, Y. and Zhu, W. (2010), "Experimental study on interaction between membrane structures and wind environment", Earthq. Eng. Eng. Vib., 9(4), 2010.
- Zheng, Z.L., Xu, X.P., Liu, C.J., Song, W.J. and Long, J. (2010), "Nonlinear aerodynamic stability analysis of orthotropic membrane structures with large amplitude", Struct. Eng. Mech., 37(4), 401-413. https://doi.org/10.12989/sem.2011.37.4.401
Cited by
- Fluid-structure interaction of a tensile fabric structure subjected to different wind speeds vol.31, pp.6, 2018, https://doi.org/10.12989/was.2020.31.6.533
- Response of a Double Hypar Fabric Structure Under Varying Wind Speed Using Fluid-Structure Interaction vol.18, pp.4, 2021, https://doi.org/10.1590/1679-78256367