References
- Aslani, F. (2013a), "Effects of specimen size and shape on compressive and tensile strengths of self-compacting concrete with or without fibres", Mag. Concrete Res., 65(15), 914-929. https://doi.org/10.1680/macr.13.00016
- Aslani, F. (2015a), "Nanoparticles in self-compacting concrete-a review", Mag. Concrete Res., 67(20), 1084-1100. https://doi.org/10.1680/macr.14.00381
- Aslani, F. (2013b), "Prestressed concrete thermal behaviour", Mag. Concrete Res., 65(3), 158-171. https://doi.org/10.1680/macr.12.00037
- Aslani, F. (2015b), "Thermal performance modeling of geopolymer concrete", J. Mater. Civil Eng., 28(1), 4015062.
- Aslani, F. and Bastami, M. (2011), "Constitutive relationships for normal- and high-strength concrete at elevated temperatures", ACI Mater. J., 108(4), 355-364.
- Aslani, F. and Bastami, M. (2015), "Relationship between deflection and crack mouth opening displacement of selfcompacting concrete beams with and without fibers", Mech. Adv. Mater. Struct., 22(11), 956-967. https://doi.org/10.1080/15376494.2014.906689
- Aslani, F. and Maia, L. (2013), "Creep and shrinkage of highstrength self-compacting concrete : experimental and analytical analysis", Mag. Concrete Res., 65(17), 1044-1058. https://doi.org/10.1680/macr.13.00048
- Aslani, F., Maia, L. and Santos, J. (2017), "Effect of specimen geometry and specimen preparation on the concrete compressive strength test", Struct. Eng. Mech., 62(1), 97-106. https://doi.org/10.12989/sem.2017.62.1.097
- Aslani, F. and Natoori, M. (2013), "Stress-strain relationships for steel fiber reinforced self- compacting concrete", Struct. Eng. Mech., 46,(2), 295-322. https://doi.org/10.12989/sem.2013.46.2.295
- Aslani, F. and Nejadi, S. (2013), "Mechanical characteristics of self-compacting concrete with and without fibres", Mag. Concrete Res., 65(10), 608-622. https://doi.org/10.1680/macr.12.00153
- Aslani, F. and Samali, B. (2013a), "Constitutive relationships for self-compacting concrete at elevated temperatures", Mater. Struct., 48(1-2), 337-356.
- Aslani, F. and Samali, B. (2013b), "Predicting the bond between concrete and reinforcing steel at elevated temperatures", Struct. Eng. Mech., 48(5),643-660. https://doi.org/10.12989/sem.2013.48.5.643
- ASTM Standards (2004), Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens, Annual Book of ASTM Standards (ASTM C39-01), American Society for Testing and Materials, Philadelphia, USA.
- Bamonte, P. and Gambarova, P.G. (2016), "High-temperature behavior of SCC in compression: comparative study on recent experimental campaigns", J. Mater. Civil Eng., 28(3), 4015141. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001378
- Bastami, M., Baghbadrani, M. and Aslani, F. (2014), "Performance of nano-Silica modified high strength concrete at elevated temperatures", Constr. Build. Mater., 68, 402-408. https://doi.org/10.1016/j.conbuildmat.2014.06.026
- Bazant, Z.P. (1993), "Size effect in tensile and compressive quasibrittle failures.", JCI International Workshop on Size Effect in Concrete Structures, 141-160.
- Bazant, Z.P. (1984), "Size effect in blunt fracture: concrete, rock, metal", J. Eng. Mech., 110(4), 518-535. https://doi.org/10.1061/(ASCE)0733-9399(1984)110:4(518)
- Bazant, Z.P. and Xiang, Y. (1997), "Size effect in compression fracture: splitting crack band propagation", J. Eng. Mech., 123(2), 162-172. https://doi.org/10.1061/(ASCE)0733-9399(1997)123:2(162)
- B.S (2000). Testing Hardened Concrete: Compressive Strength of Test Specimens, British Standard Institution, London, U.K.
- Dehestani, M., Nikbin, I.M. and Asadollahi, S. (2014), "Effects of specimen shape and size on the compressive strength of selfconsolidating concrete (SCC)", Constr. Build. Mater., 66, 685-691. https://doi.org/10.1016/j.conbuildmat.2014.06.008
- Dias, W.P.S., Khoury, G.A. and Sullivan, P.J.E. (1990), "Mechanical properties of hardened cement paste exposed to temperatures up to 700 C (1292 F)", Mater. J., 87(2), 160-166.
- EFNARC (2005), The European Guidelines for Self-Compacting Concrete, Specification, Production and Use, Experts for Specialised Construction and Concrete Systems, Farnham, UK.
- Fares, H., Remond, S., Noumowe, A. and Cousture, A. (2010), "High temperature behaviour of self-consolidating concrete: microstructure and physicochemical properties", Cement Concrete Res., 40(3), 488-496. https://doi.org/10.1016/j.cemconres.2009.10.006
- Kim, J.K. (1990), "Size effect in concrete specimens with dissimilar initial cracks", Mag. Concrete Res., 42(153), 233-238. https://doi.org/10.1680/macr.1990.42.153.233
- Kim, J.K., Yi, S.T. and Kim, J.H.J. (2001), "Effect of specimen sizes on flexural compressive strength of concrete", Struct. J., 98(3), 416-424.
- Kourkoulis, S.K. and Ganniari-Papageorgiou, E. (2010), "Experimental study of the size-and shape-effects of natural building stones", Constr. Build. Mater., 24(5), 803-810. https://doi.org/10.1016/j.conbuildmat.2009.10.027
- Kumar, S. and Barai, S.V. (2012), "Size-effect of fracture parameters for crack propagation in concrete: a comparative study", Comput. Concrete, 9(1), 1-19. https://doi.org/10.12989/cac.2012.9.1.001
- Maia, L. and Aslani, F. (2016), "Modulus of elasticity of concretes produced with basaltic aggregate", Comput. Concrete, 17(1), 129-140. https://doi.org/10.12989/cac.2016.17.1.129
- Nikbin, I.M., Dehestani, M., Beygi, M.H.A. and Rezvani, M. (2014), "Effects of cube size and placement direction on compressive strength of self-consolidating concrete", Constr. Build. Mater., 59, 144-150. https://doi.org/10.1016/j.conbuildmat.2014.02.008
- Sideris, K.K. (2007), "Mechanical characteristics of selfconsolidating concretes exposed to elevated temperatures", J. Mater. Civil Eng., 19(8), 648-654. https://doi.org/10.1061/(ASCE)0899-1561(2007)19:8(648)
- Sim, J.I., Yang, K.H., Kim, H.Y. and Choi, B.J. (2013), "Size and shape effects on compressive strength of lightweight concrete", Constr. Build. Mater., 38, 854-864. https://doi.org/10.1016/j.conbuildmat.2012.09.073
- Del Viso, J.R., Carmona, J.R. and Ruiz, G. (2007), "Size and shape effects on the compressive strength of high strength concrete", Proceedings of the 6th International Conference on Fracture Mechanics of Concrete and Concrete Structures, 1297-1304.
- Van Der Vurst, F., Desnerck, P., Peirs, J. and De Schutter, G. (2014), "Shape factors of self-compacting concrete specimens subjected to uniaxial loading", Cement Concrete Compos., 54, 62-69. https://doi.org/10.1016/j.cemconcomp.2014.05.009
- Yi, S.T., Yang, E.I. and Choi, J.C. (2006), "Effect of specimen sizes, specimen shapes, and placement directions on compressive strength of concrete", Nucl .Eng. Des., 236(2), 115-127. https://doi.org/10.1016/j.nucengdes.2005.08.004
- Zhang, B. and Bicanic, N. (2002), "Residual fracture toughness of normal-and high-strength gravel concrete after heating to 600 C", Mater. J., 99(3), 217-226.
Cited by
- Flexural strength of concrete-galvalume composite beam under elevated temperatures vol.27, pp.1, 2018, https://doi.org/10.12989/cac.2021.27.1.013