DOI QR코드

DOI QR Code

Gapped Nearly Free-Standing Graphene on an SiC(0001) Substrate Induced by Manganese Atoms

  • Hwang, Jinwoong (Department of Physics, Pusan National University) ;
  • Lee, Ji-Eun (Department of Physics, Pusan National University) ;
  • Kang, Minhee (Department of Physics, Pusan National University) ;
  • Park, Byeong-Gyu (Pohang Accelerator Laboratory, Pohang University of Science and Technology) ;
  • Denlinger, Jonathan (Advanced Light Source, Lawrence Berkeley National Laboratory) ;
  • Mo, Sung-Kwan (Advanced Light Source, Lawrence Berkeley National Laboratory) ;
  • Hwang, Choongyu (Department of Physics, Pusan National University)
  • Received : 2018.09.17
  • Accepted : 2018.09.29
  • Published : 2018.09.30

Abstract

The electron band structure of manganese-adsorbed graphene on an SiC(0001) substrate has been studied using angle-resolved photoemission spectroscopy. Upon introducing manganese atoms, the conduction band of graphene, that is observed in pristine graphene indicating intrinsic electron-doping by the substrate, completely disappears and the valence band maximum is observed at 0.4 eV below Fermi energy. At the same time, the slope of the valence band decreases by the presence of manganese atoms, approaching the electron band structure calculated using the local density approximation method. The former provides experimental evidence of the formation of nearly free-standing graphene on an SiC substrate, concomitant with a metal-to-insulator transition. The latter suggests that its electronic correlations are efficiently screened, suggesting that the dielectric property of the substrate is modified by manganese atoms and indicating that electronic correlations in grpahene can also be tuned by foreign atoms. These results pave the way for promising device application using graphene that is semiconducting and charge neutral.

Keywords

Acknowledgement

Supported by : Pusan National University

References

  1. Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Nature 438, 201 (2005). https://doi.org/10.1038/nature04235
  2. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature 438, 197 (2005). https://doi.org/10.1038/nature04233
  3. L. Liao, Y. C. Lin, M. Bao, R. Cheng, J. Bai, Y. Liu, Y. Qu, K. L. Wang, Y. Huang, and X. Duan, Nature 467, 305 (2010). https://doi.org/10.1038/nature09405
  4. K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, Solid State Commun. 146, 351 (2008). https://doi.org/10.1016/j.ssc.2008.02.024
  5. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009). https://doi.org/10.1103/RevModPhys.81.109
  6. J. Hwang, H. Hwang, M. J. Kim, H. Ryu, J. E. Lee, Q. Zhou, S. K. Mo, J. Lee, A. Lanzara, and C. Hwang, Nanoscale 9, 11498 (2017). https://doi.org/10.1039/C7NR03080K
  7. D. Usachov, A. Fedorov, M. M. Otrokov, A. Chikina, O Vilkov, A. Petukhov, A. G. Rybkin, Y. M. Koroteev, E. V. Chulkov, V. K. Adamchuk, A. Gr uneis, C. Laubschat, and D. V. Vyalikh, Nano Lett.15, 2396 (2015). https://doi.org/10.1021/nl504693u
  8. S. M. Kim and K. K. Kim, ASCT 24, 268 (2015). https://doi.org/10.5757/ASCT.2015.24.6.268
  9. A. Varykhalov, J. Sanchez-Barriga, A. M. Shikin, C. Biswas, E. Vescovo, A. Rybkin, D. Marchenko, and O. Rader, Phys. Rev. Lett. 101, 157601 (2008). https://doi.org/10.1103/PhysRevLett.101.157601
  10. C. Riedl, C. Coletti, T. Iwasaki, A. A. Zakharov, and U. Starke, Phys. Rev. Lett. 103, 246804 (2009). https://doi.org/10.1103/PhysRevLett.103.246804
  11. A. Varykhalov, J. Sanchez-Barriga, D. Marchenko, P. Hlawenka, P. S. Mandal, and O. Rader, Nat. Commun. 6, 7610 (2015). https://doi.org/10.1038/ncomms8610
  12. A. M. Shikin, A. G. Rybkin, D. Marchenko, A. A. Rybkina, M. R. Sholz, O. Rader, and A. Varyhalov, New J. Phys. 15, 013016 (2013). https://doi.org/10.1088/1367-2630/15/1/013016
  13. I. Gierz, T. Suzuki, R. T. Weitz, D. S. Lee, B. Krauss, C. Riedl, U. Starke, H. Hochst, J. H. Smet, C. R. Ast, and K. Kern, Phys. Rev. B 81, 235408 (2010). https://doi.org/10.1103/PhysRevB.81.235408
  14. K. V. Emtsev, A. A. Zakharov, C. Coletti, S. Forti, and U. Starke, Phys. Rev. B 84, 125423 (2011). https://doi.org/10.1103/PhysRevB.84.125423
  15. H. Kim, O. Dugerjav, A. Lkhagvasuren, and J. M. Seo, J. Phys. D: Appl. Phys. 49, 135307 (2016). https://doi.org/10.1088/0022-3727/49/13/135307
  16. S. Y. Zhou, G. H. Gweon, A. V. Fedorov, P. N. First, W. A. de Heer, D.-H. Lee, F. Guinea, A. H. Castro Neto, and A. Lanzara, Nat. Mater. 6, 770 (2007). https://doi.org/10.1038/nmat2003
  17. C. Hwang, J. Hwang, J. E. Lee, J. Denlinger, and S. K. Mo, Appl. Phys. Lett. 111, 231603 (2017). https://doi.org/10.1063/1.4986425
  18. S. Kim, J. Ihm, H. J. Choi, and Y. W. Son, Phys. Rev. Lett. 100, 176802 (2008). https://doi.org/10.1103/PhysRevLett.100.176802
  19. S. Sung, S. H. Lee, P. Lee, J. Kim, H. Park, M. Ryu, N. Kim, C. Hwang, S. H. Jhi, and J. Chung, RSC Adv. 6, 9106 (2016). https://doi.org/10.1039/C5RA24482J
  20. M. Ryu, P. Lee, J. Kim, H. Park, and J. Chung, Nanotechnol. 27, 31LT03 (2016).
  21. J. Kim, P. Lee, M. Ryu, H. Park, and J. Chung, RSC Adv. 6, 114219 (2016). https://doi.org/10.1039/C6RA24395A
  22. T. Gao, Y. Gao, C. Chang, Y. Chen, M. Liu, S. Xie, K. He, X. Ma, Y. Zhang, and Z. Liu, ACS Nano 6, 6562 (2012). https://doi.org/10.1021/nn302303n
  23. C. Hwang, C. H. Park, D. A. Siegel, A. V. Fedorov, S. G. Louie, and A. Lanzara, Phys. Rev. B 84, 125422 (2011). https://doi.org/10.1103/PhysRevB.84.125422
  24. T. Seyller, K. V. Emtsev, F. Speck, K. Y. Gao, and L. Ley, Appl. Phys. Lett. 88, 242103 (2006). https://doi.org/10.1063/1.2213928
  25. J. Hwang and C. Hwang, New J.Phys.18, 043005 (2016). https://doi.org/10.1088/1367-2630/18/4/043005
  26. F. Varchon, R. Feng, J. Hass, X. Li, B. Ngoc Nguyen, C. Naud, P. Mallet, J. Y. Veuillen, C. Berger, E. H. Conrad, and L. Magaud, Phys. Rev. Lett. 99, 126805 (2007). https://doi.org/10.1103/PhysRevLett.99.126805
  27. D. A. Siegel, C. H. Park, C. Hwang, J. Deslipppe, A. V. Fedorov, S. G. Louie, and A. Lanzara, Proc. Natl. Acad. Sci. USA 108, 11365 (2011). https://doi.org/10.1073/pnas.1100242108
  28. C. Hwang, D. A. Siegel, S. K. Mo, W. Regan, A. Ismach, Y. Zhang, A. Zettl, and A. Lanzara, Sci. Rep. 2, 590 (2012). https://doi.org/10.1038/srep00590
  29. D. A. Siegel, C. Hwang, A. V. Fedorov, and A. Lanzara, New J. Phys. 14, 095006 (2012). https://doi.org/10.1088/1367-2630/14/9/095006
  30. I. I. Klimovskikh, S. S. Tsirkin, A. G. Rybkin, A. A. Rybkina, M. V. Filianina, E. V. Zhizhin, E. V. Chulkov, and A. M. Shikin, Phys. Rev. B 90, 235431 (2014). https://doi.org/10.1103/PhysRevB.90.235431
  31. J. Hwang, K. Kyoo, H. Ryu, J. Kim, J. E. Lee, S. Kim, M. Kang, B. G. Park, A. Lanzara, J. Chung, S.-K. Mo, J. Denlinger, B. I. Min, and C. Hwang, Nano Lett. 18, 3661 (2018) https://doi.org/10.1021/acs.nanolett.8b00784
  32. J. Ren, H. Guo, J. Pan, Y. F. Zhang, Y. Yang, X. Wu, S. Du, M. Ouyang, and H.-J. Gao, Phys. Rev. Lett. 119, 176806 (2017). https://doi.org/10.1103/PhysRevLett.119.176806
  33. H. P. Bonzel, Phys. Status Solidi B 20, 493 (1967). https://doi.org/10.1002/pssb.19670200210
  34. J. Ristein, S. Mammadov, and Th. Seyller, Phys. Rev. Lett. 108, 246104 (2012). https://doi.org/10.1103/PhysRevLett.108.246104