DOI QR코드

DOI QR Code

Changes of Microstructures and Mechanical Properties of Recycled AC2B Alloy Chip Fabricated by Solution Heat Treatment

재활용 절삭칩으로 제조된 AC2B 합금의 용체화 열처리에 따른 미세조직 및 기계적특성 변화

  • Received : 2018.03.08
  • Accepted : 2018.04.04
  • Published : 2018.04.30

Abstract

Changes in the microstructures and mechanical properties of an AC2B alloy through solution heat treatment were investigated using recycled AC2B cutting chips as raw material. The as-cast microstructure of the AC2B alloy comprised ${\alpha}$-Al, $Al_2Cu$, and coarse needle-shaped phases considered to be eutectic Si and an Al-Fe-Si based intermetallic compound. After solution heat treatments at $505^{\circ}C$ for 1 h and 6 h, the samples showed complete dissolution of $Al_2Cu$ and relatively fine distribution of intermetallic compounds. Hardness test results showed that the hardness rapidly increased after the solution heat treatment for 1 h by solid solution hardening, and the increase of hardness exhibited a plateau from 1 h to 6 h. The results of the hardness and tensile tests showed that there was no visible difference in the effect of 1 h and 6 h solid solution treatment.

Keywords

References

  1. Jorstad J. L, Die Casting Engineer, "Future technology in Aluminum die casting", 9 (2006) 18-25.
  2. Trenda G, Cast Plant Technol., "Die casting alloy for ductile thin-walled Structural Parts", 22 (2006) 28.
  3. Sigworth G. K, Koch H and Krug P, Light Metals Symposium In Proceedings of the 40th-Annual Conference of Metallurgist and Electrometallurgy, Canadian Institute of Mining, Toronto (2001) 349-358.
  4. Koch H and Franke A. J, Transaction of the 20th International Die Casting Congress and Exposition, NADCA, Cleveland (1999) 11-14.
  5. European Aluminium, "Aluminum and Energy in the EU", https://www.european-alumi nium.eu/, (2018.03.19).
  6. Aluminium for Future Generations, "Implementing the OECD Environmental Strategy Meeting", http://primary.world-aluminium.org/home/, (2018.03.19).
  7. Schmitz, C., Handbook of Aluminum Recycling, Vulkan Verlag GmbH, Essen (2006) 27-30.
  8. KimHS, Kim HM and Kim WY, Trends in Metals & Meterials Engineering, "Trends in the Aluminum scrap recycling industry", 23 (2010) 23-30.
  9. Sharma, C.S., Nakagawa, T., and Takenaka, N., CIRP Ann. Manuf. Technol., "Recent development in the recycling of machining dwarfs by sintering and powder forging", 26 (1977) 121-125.
  10. Gronostajski, J.Z., Kaczmar, J.W., Marciniak, H., and Matuszak, A., J. Mater. Process. Technol., "Direct recycling of aluminum chips into extruded products", 64 (1997) 149-156. https://doi.org/10.1016/S0924-0136(96)02563-0
  11. Jirang CUI and Hans J. ROVEN, Tran. Nonferrous Met. Soc. China, "Recycling of automotive aluminum", 20 (2010) 2057-2063. https://doi.org/10.1016/S1003-6326(09)60417-9
  12. Eva Sevigne-Itoiz, Carles M. Gasol, Joan Rieradevall and Xavier Gabarrell, Resources, Conservation and Recycling, "Environmental consequences of recycling aluminum old scrap in a global market", 89 (2014) 94-103. https://doi.org/10.1016/j.resconrec.2014.05.002
  13. Jirang CUI and Hans J. ROVEN, Tran. Nonferrous Met. Soc. China, "Recycling of automotive aluminum", 20 (2010) 2057-2063. https://doi.org/10.1016/S1003-6326(09)60417-9
  14. J. M. Boileau and J. E. Allison, Metall. Mater. Trans. A., "The effect of solidification time and heat treatment on the fatigue properties of a cast 319 aluminum alloy", 34A (2003) 1807-1820.
  15. K. Sasaki and T. Takahashi, Int. J. Fatigue, "Low cycle thermal fatigue and microstructural change of AC2B-T6 aluminum alloy", 28 (2006) 203-210. https://doi.org/10.1016/j.ijfatigue.2005.06.025
  16. N. Roy, A. M. Samuel and F. H. Samuel, Metall. Mater. Trans. A, "Porosity formation in AI-9 Wt Pct Si-3 Wt Pct Cu alloy systems: Metallographic observations", 27A (1996) 415-249.
  17. D. Kent, G. B. Schaffer and J. Drennan, Mater. Sci. Eng. A, "Age hardening of a sintered Al-Cu-Mg-Si-(Sn) alloy", 405 (2005) 65-73. https://doi.org/10.1016/j.msea.2005.05.104
  18. Woo KD, Lee JS and Kim SW, Metals and Materials Int.. "Calorimetric investigation of precipitation kinetics in Al-Mg- Si-X(Cr,Be) alloys", 5 (1999) 363-368.
  19. H. R. Ammar, C. Moreau, A. M. Samuel, F. H. Samuel and H. W. Doty, Mater. Sci. Eng. A, "Influences of alloying elements, solution treatment time and quenching media on quality indices of 413-type Al-Si casting alloys", 489 (2008) 426-438. https://doi.org/10.1016/j.msea.2007.12.032
  20. N. Crowell and S. Shivkumar, AFS Trans., "Solution treat- ment effects in cast Al-Si-Cu alloys", 103 (1995) 721-726.
  21. ASTM E8-04, "Tension Testing of Metallic Materials", ASTM International, PA (2004).
  22. ASM Specialty Handbook, Aluminum and Aluminum alloy, Typical heat treatments for aluminum alloy sand and permanent-mold castings, ASM International, Netherlands (1994).
  23. Kim HJ, J. Korea Foundry Society, "Effects of melt super- heating on the shape, modification of${\beta}$-A1FeSi intermetallic compound in AC2B aluminum alloy," 21 (2001) 179-186.
  24. D. Apelian and M. Makhlouf, High integrity aluminum die casting: (alloys, Processes, and Melt Preparation), North American Die Casting Association, IL (2004).
  25. D.A. Porter, K.E. Easterling and M. Sherif, Phase Trans-formations in Metals and Alloys (Revised Reprint), CRC press, Florida (2009).
  26. L. J. Colley, M. A. Wells and W. J. Poole, Canadian Metallurgical Quarterly, "Microstructure-strength models for heat treatment of Al-Si-Mg casting alloys I: microstructure evolution and precipitation kinetics", 53 (2014) 125-137. https://doi.org/10.1179/1879139513Y.0000000112