DOI QR코드

DOI QR Code

Microtensile bond strength of resin cement primer containing nanoparticles of silver (NAg) and amorphous calcium phosphate (NACP) to human dentin

  • Arjmand, Nushin (Department of Restorative and Cosmetic Dentistry, School of Dentistry, Bojnord University of Medical Sciences) ;
  • Boruziniat, Alireza (Dental Research Center, Mashhad University of Medical Sciences) ;
  • Zakeri, Majid (Postgraduate Student of Mashhad University of Medical Sciences) ;
  • Mohammadipour, Hamideh Sadat (Dental Research Center, Mashhad University of Medical Sciences)
  • Received : 2017.02.12
  • Accepted : 2018.02.27
  • Published : 2018.06.29

Abstract

PURPOSE. The purpose of the current study was to evaluate the effect of incorporating nanoparticles of silver (NAg) and amorphous calcium phosphate (NACP) into a self-etching primer of a resin cement on the microtensile bond strength of dentin, regarding the proven antibacterial feature of NAg and remineralizing effect of NACP. MATERIALS AND METHODS. Flat, mid-coronal dentin from 20 intact extracted human third molars were prepared for cementation using Panavia F2.0 cement. The teeth were randomly divided into the four test groups (n=5) according to the experimental cement primer composition: cement primer without change (control group), primer with 1% (wt) of NACP, primer with 1% (wt) of physical mixture of NACP+Nag, and primer with 1% (wt) of chemical mixture of NACP+Nag. The resin cement was used according to the manufacturer's instructions. After storage in distilled water at $37^{\circ}C$ for 24 h, the bonded samples were sectioned longitudinally to produce $1.0{\times}1.0mm$ beams for micro-tensile bond strength testing in a universal testing machine. Failure modes at the dentin-resin interface were observed using a stereomicroscope. The data were analyzed by one-way ANOVA and Tukey's post-hoc tests and the level of significance was set at 0.05. RESULTS. The lowest mean microtensile bond strength was obtained for the NACP group. Tukey's test showed that the bond strength of the control group was significantly higher than those of the other experimental groups, except for group 4 (chemical mixture of NACP and NAg; P=.67). CONCLUSION. Novel chemical incorporation of NAg-NACP into the self-etching primer of resin cement does not compromise the dentin bond strength.

Keywords

References

  1. De Backer H, Van Maele G, De Moor N, Van den Berghe L, De Boever J. A 20-year retrospective survival study of fixed partial dentures. Int J Prosthodont 2006;19:143-53.
  2. Goodacre CJ, Bernal G, Rungcharassaeng K, Kan JY. Clinical complications in fixed prosthodontics. J Prosthet Dent 2003; 90:31-41. https://doi.org/10.1016/S0022-3913(03)00214-2
  3. Jokstad A, Bayne S, Blunck U, Tyas M, Wilson N. Quality of dental restorations. FDI Commission Project 2-95. Int Dent J 2001;51:117-58. https://doi.org/10.1002/j.1875-595X.2001.tb00832.x
  4. Libby G, Arcuri MR, LaVelle WE, Hebl L. Longevity of fixed partial dentures. J Prosthet Dent 1997;78:127-31. https://doi.org/10.1016/S0022-3913(97)70115-X
  5. Valderhaug J, Jokstad A, Ambjornsen E, Norheim PW. Assessment of the periapical and clinical status of crowned teeth over 25 years. J Dent 1997;25:97-105. https://doi.org/10.1016/S0300-5712(96)00008-5
  6. Walton JN, Gardner FM, Agar JR. A survey of crown and fixed partial denture failures: length of service and reasons for replacement. J Prosthet Dent 1986;56:416-21. https://doi.org/10.1016/0022-3913(86)90379-3
  7. Haddad MF, Rocha EP, Assuncao WG. Cementation of prosthetic restorations: from conventional cementation to dental bonding concept. J Craniofac Surg 2011;22:952-8. https://doi.org/10.1097/SCS.0b013e31820fe205
  8. Ferrari M. Cement thickness and microleakage under Dicor crowns: an in vivo investigation. Int J Prosthodont 1991;4: 126-31.
  9. Albert FE, El-Mowafy OM. Marginal adaptation and microle- akage of Procera AllCeram crowns with four cements. Int J Prosthodont 2004;17:529-35.
  10. Diaz-Arnold AM, Vargas MA, Haselton DR. Current status of luting agents for fixed prosthodontics. J Prosthet Dent 1999;81:135-41. https://doi.org/10.1016/S0022-3913(99)70240-4
  11. Shafiei F, Doozandeh M, Alavi AA. Effect of resin coating and chlorhexidine on the microleakage of two resin cements after storage. J Prosthodont 2011;20:106-12. https://doi.org/10.1111/j.1532-849X.2010.00670.x
  12. Bürgers R, Eidt A, Frankenberger R, Rosentritt M, Schweikl H, Handel G, Hahnel S. The anti-adherence activity and bac- tericidal effect of microparticulate silver additives in compos- ite resin materials. Arch Oral Biol 2009;54:595-601. https://doi.org/10.1016/j.archoralbio.2009.03.004
  13. Cheng L, Weir MD, Limkangwalmongkol P, Hack GD, Xu HH, Chen Q, Zhou X. Tetracalcium phosphate composite containing quaternary ammonium dimethacrylate with anti- bacterial properties. J Biomed Mater Res B Appl Biomater 2012;100:726-34.
  14. Zhang K, Melo MA, Cheng L, Weir MD, Bai Y, Xu HH. Effect of quaternary ammonium and silver nanoparticle-containing adhesives on dentin bond strength and dental plaque microcosm biofilms. Dent Mater 2012;28:842-52. https://doi.org/10.1016/j.dental.2012.04.027
  15. Moreau JL, Sun L, Chow LC, Xu HH. Mechanical and acid neutralizing properties and bacteria inhibition of amorphous calcium phosphate dental nanocomposite. J Biomed Mater Res B Appl Biomater 2011;98:80-8.
  16. Beyth S, Polak D, Milgrom C, Weiss EI, Matanis S, Beyth N. Antibacterial activity of bone cement containing quaternary ammonium polyethyleneimine nanoparticles. J Antimicrob Chemother 2014;69:854-5. https://doi.org/10.1093/jac/dkt441
  17. Yoshida K, Tanagawa M, Atsuta M. Characterization and inhibitory effect of antibacterial dental resin composites incor- porating silver-supported materials. J Biomed Mater Res 1999;47:516-22. https://doi.org/10.1002/(SICI)1097-4636(19991215)47:4<516::AID-JBM7>3.0.CO;2-E
  18. Hernandez-Sierra JF, Ruiz F, Pena DC, Martinez-Gutierrez F, Martinez AE, Guillen Ade J, Tapia-Perez H, Castanon GM. The antimicrobial sensitivity of Streptococcus mutans to nanoparticles of silver, zinc oxide, and gold. Nanomedicine 2008;4:237-40. https://doi.org/10.1016/j.nano.2008.04.005
  19. Cheng L, Weir MD, Zhang K, Xu SM, Chen Q, Zhou X, Xu HH. Antibacterial nanocomposite with calcium phosphate and quaternary ammonium. J Dent Res 2012;91:460-6. https://doi.org/10.1177/0022034512440579
  20. Melo MA, Weir MD, Rodrigues LK, Xu HH. Novel calcium phosphate nanocomposite with caries-inhibition in a human in situ model. Dent Mater 2013;29:231-40. https://doi.org/10.1016/j.dental.2012.10.010
  21. Moreau JL, Weir MD, Giuseppetti AA, Chow LC, Antonucci JM, Xu HH. Long-term mechanical durability of dental nanocomposites containing amorphous calcium phosphate nanoparticles. J Biomed Mater Res B Appl Biomater 2012; 100:1264-73.
  22. Xu HH, Moreau JL, Sun L, Chow LC. Nanocomposite containing amorphous calcium phosphate nanoparticles for caries inhibition. Dent Mater 2011;27:762-9. https://doi.org/10.1016/j.dental.2011.03.016
  23. Zhao J, Liu Y, Sun WB, Zhang H. Amorphous calcium phosphate and its application in dentistry. Chem Cent J 2011;5:40. https://doi.org/10.1186/1752-153X-5-40
  24. Dickens SH, Flaim GM, Takagi S. Mechanical properties and biochemical activity of remineralizing resin-based $Ca-PO_{4}$ cements. Dent Mater 2003;19:558-66. https://doi.org/10.1016/S0109-5641(02)00105-7
  25. Langhorst SE, O'Donnell JN, Skrtic D. In vitro remineralization of enamel by polymeric amorphous calcium phosphate composite: quantitative microradiographic study. Dent Mater 2009;25:884-91. https://doi.org/10.1016/j.dental.2009.01.094
  26. Chen L, Yu Q, Wang Y, Li H. BisGMA/TEGDMA dental composite containing high aspect-ratio hydroxyapatite nanofibers. Dent Mater 2011;27:1187-95. https://doi.org/10.1016/j.dental.2011.08.403
  27. Ciobanu CS, Iconaru SL, Le Coustumer P, Constantin LV, Predoi D. Antibacterial activity of silver-doped hydroxyapatite nanoparticles against gram-positive and gram-negative bacteria. Nanoscale Res Lett 2012;7:324. https://doi.org/10.1186/1556-276X-7-324
  28. O’Donnell JN, Schumacher GE, Antonucci JM, Skrtic D. Adhesion of amorphous calcium phosphate composites bonded to dentin: a study in failure modality. J Biomed Mater Res B Appl Biomater 2009;90:238-49.
  29. Mazzaoui SA, Burrow MF, Tyas MJ, Dashper SG, Eakins D, Reynolds EC. Incorporation of casein phosphopeptide-amorphous calcium phosphate into a glass-ionomer cement. J Dent Res 2003;82:914-8. https://doi.org/10.1177/154405910308201113
  30. Deligeorgi V, Mjör IA, Wilson NH. An overview of reasons for the placement and replacement of restorations. Prim Dent Care 2001;8:5-11. https://doi.org/10.1308/135576101771799335
  31. Imazato S, Kinomoto Y, Tarumi H, Ebisu S, Tay FR. Antibacterial activity and bonding characteristics of an adhesive resin containing antibacterial monomer MDPB. Dent Mater 2003;19:313-9. https://doi.org/10.1016/S0109-5641(02)00060-X
  32. Li F, Chen J, Chai Z, Zhang L, Xiao Y, Fang M, Ma S. Effects of a dental adhesive incorporating antibacterial monomer on the growth, adherence and membrane integrity of Streptococcus mutans. J Dent 2009;37:289-96. https://doi.org/10.1016/j.jdent.2008.12.004
  33. Duarte SJ, Lolato AL, de Freitas CR, Dinelli W. SEM analysis of internal adaptation of adhesive restorations after contamination with saliva. J Adhes Dent 2005;7:51-6.
  34. Loguercio AD, Reis A, Bortoli G, Patzlaft R, Kenshima S, Rodrigues Filho LE, Accorinte Mde L, van Dijken JW. Influence of adhesive systems on interfacial dentin gap formation in vitro. Oper Dent 2006;31:431-41. https://doi.org/10.2341/05-53
  35. Peliz MI, Duarte S Jr, Dinelli W. Scanning electron microscope analysis of internal adaptation of materials used for pulp protection under composite resin restorations. J Esthet Restor Dent 2005;17:118-28. https://doi.org/10.1111/j.1708-8240.2005.tb00098.x
  36. Perdigao J, Lambrechts P, Van Meerbeek B, Braem M, Yildiz E, Yucel T, Vanherle G. The interaction of adhesive systems with human dentin. Am J Dent 1996;9:167-73.
  37. Walshaw PR, McComb D. SEM evaluation of the resin-dentin interface with proprietary bonding agents in human sub- jects. J Dent Res 1994;73:1079-87. https://doi.org/10.1177/00220345940730051001
  38. Ahn SJ, Lee SJ, Kook JK, Lim BS. Experimental antimicrobial orthodontic adhesives using nanofillers and silver nanoparticles. Dent Mater 2009;25:206-13. https://doi.org/10.1016/j.dental.2008.06.002
  39. Chen C, Weir MD, Cheng L, Lin NJ, Lin-Gibson S, Chow LC, Zhou X, Xu HH. Antibacterial activity and ion release of bonding agent containing amorphous calcium phosphate nanoparticles. Dent Mater 2014;30:891-901. https://doi.org/10.1016/j.dental.2014.05.025
  40. Cheng L, Weir MD, Xu HH, Antonucci JM, Kraigsley AM, Lin NJ, Lin-Gibson S, Zhou X. Antibacterial amorphous calcium phosphate nanocomposites with a quaternary ammonium dimethacrylate and silver nanoparticles. Dent Mater 2012;28:561-72. https://doi.org/10.1016/j.dental.2012.01.005
  41. Melo MA, Cheng L, Zhang K, Weir MD, Rodrigues LK, Xu HH. Novel dental adhesives containing nanoparticles of silver and amorphous calcium phosphate. Dent Mater 2013;29: 199-210. https://doi.org/10.1016/j.dental.2012.10.005
  42. Uysal T, Yilmaz E, Ramoglu SI. Amorphous calcium phosphate-containing orthodontic cement for band fixation: an in vitro study. World J Orthod 2010;11:129-34.
  43. Al Zraikat H, Palamara JE, Messer HH, Burrow MF, Reynolds EC. The incorporation of casein phosphopeptide-amorphous calcium phosphate into a glass ionomer cement. Dent Mater 2011;27:235-43. https://doi.org/10.1016/j.dental.2010.10.008
  44. Welch K, Cai Y, Engqvist H, Stromme M. Dental adhesives with bioactive and on-demand bactericidal properties. Dent Mater 2010;26:491-9. https://doi.org/10.1016/j.dental.2010.01.008
  45. Cheng L, Zhang K, Melo MA, Weir MD, Zhou X, Xu HH. Anti-biofilm dentin primer with quaternary ammonium and silver nanoparticles. J Dent Res 2012;91:598-604. https://doi.org/10.1177/0022034512444128