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AN OPTIMAL CONSUMPTION AND INVESTMENT

PROBLEM WITH CES UTILITY AND NEGATIVE WEALTH

CONSTRAINTS

Kum-Hwan Roh

Abstract. We investigate the optimal consumption and portfolio strate-

gies of an agent who has a constant elasticity of substitution (CES) utility
function under the negative wealth constraint. We use the martingale

method to derive the closed-form solution, and we give some numerical

implications.

1. Introduction

The continuous-time portfolio selection problem is one of the most interest-
ing fields in mathematical finance/financial economics after the pioneer research
works of Merton [10, 11]. There are two famous approaches to solve the op-
timization problem obtained from the optimal consumption and investment
problem. One is the dynamic programming method ([6]) and the other is the
martingale method ([7, 2]). In this paper we use the martingale approach to
solve our optimization problem.

A borrowing constraint is one of the most important issues when we consider
the portfolio selection problem with labor income. This constraint means that
the agent is required to maintain a non-negative wealth level (see [5, 4, 1, 3, 9]
etc). More general version of the borrowing constraint is a negative wealth
constraint. This constraint means that the agent can borrow the partial amount
of the future labor income, that is, the agent is required to maintain a negative
wealth level which is determined by the negative wealth constraint ratio ν, for
ν ∈ [0, 1] (see [13, 12] etc). In this paper we focus on the negative wealth
constraint.

When we investigate the portfolio selection problem, we need to consider a
utility function as an objective function. Generally the constant relative risk
aversion (CRRA) utility function or the constant absolute risk aversion (CARA)
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utility function is used. Sometimes the Cobb-Douglas utility function (see [4, 13]
etc) is considered when there are two goods (for example consumption and
leisure). In this paper we apply the constant elasticity of substitution (CES)
utility function which is the general version of the Cobb-Douglas utility function.
Although the CES utility function is very important in economics, there are
fewer research works (see [1, 8] etc) about portfolio selection with CES utility
because it is difficult to handle the CES utility function.

In this paper we use the martingale method to obtain the closed-form solution
to the optimal consumption and investment problem with CES utility and a
negative wealth constraint. This paper is organized as follows. In Section 2 the
financial market is described. Section 3 gives our main optimization problem
with the closed-form solution. Also we supply the numerical results for our
solutions. In Section 4 we concludes.

2. The Financial Market

We consider a continuous-time financial market and assume that two assets
are traded. There are one riskless asset with constant interest rate r > 0
and one risky asset St, which follows the geometric Brownian motion dSt =
µStdt + σStdBt, where µ > r and σ > 0 are assumed to be constant, and Bt
is a standard Brownian motion on the underlying probability space (Ω,F ,P).
Let {Ft}t≥0 be the augmentation under P of the filtration generated by the

standard Brownian motion {Bt}t≥0.

Let π := {πt}t≥0 be the dollar-amount of money can be invested in the

risky asset St and c := {ct}t≥0 be the nonnegative consumption rate process of

the agent. They are measurable processes adapted to {Ft}t≥0 and satisfy the
integrability conditions:∫ t

0

π2
sds <∞, and

∫ t

0

csds <∞, for all t ≥ 0, a.s.

We also consider the leisure rate process lt ≥ 0. In order to obtain the closed-
form solutions, we assume that the leisure rate process lt is equal to a constant
L. Let I > 0 be the agent’s constant labor income stream. Thus the agent’s
wealth process xt evolves according to

dxt = [rxt + πt(µ− r)− ct + I] dt+ σπtdBt, (1)

with an initial endowment x0 = x.
We assume that the agent has a utility function of constant elasticity of

substitution (CES) type of consumption and leisure

u(c, l) :=
{αcρ + (1− α)lρ}

1−γ
ρ

α(1− γ)
, ρ < 1, ρ 6= 0 , 0 < α < 1, γ > 0 and γ 6= 1,

(2)
where 1/(1−ρ) is the elasticity of substitution between consumption and leisure,
α is a share parameter of consumption’s contribution to the agent’s utility, and
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γ is the agent’s coefficient of relative risk aversion. Also we assume that the
leisure rate process is constant i.e. lt = L for all t ≥ 0. Under the constant
leisure L, the CES utility function (2) can be rewritten as

uL(c) := u(c, L) =
{αcρ + (1− α)Lρ}

1−γ
ρ

α(1− γ)
. (3)

Also we assume that there is a negative wealth constraint ([13, 12]) given by

xt ≥ −ν
I

r
, for all t ≥ 0 and ν ∈ [0, 1]. (4)

This constraint means that the agent can borrow partially against her future
labor income. Especially, if ν = 1, then she can borrow fully against her future
labor income, and ν = 0 means that she cannot borrow against her future labor
income, which is called the borrowing constraint. The market price of risk and
the state price density are defined, respectively, as

θ :=
µ− r
σ

and Ht := exp

{
−
(
r +

1

2
θ2
)
t− θBt

}
.

From the wealth process (1), we derive the budget constraint as follows:

E
[∫ ∞

0

Ht(ct − I)dt

]
≤ x. (5)

3. The Optimization Problem with Negative Wealth Constraints

Now we consider the optimization problem as follows:

V (x) = sup
(c,π)∈A(x)

E
[∫ ∞

0

e−βtuL(ct)dt

]
(6)

with the negative wealth constraint (4) and the budget constraint (5). Here
β > 0 is a subjective discount factor, A(x) is the class of all admissible controls
(c, π), and the utility uL(ct) is a CES utility function defined in (3).

Using a Lagrange mutiplier λ > 0, we define a dual value function as follow:

Ṽ (λ) = sup
c

E
[∫ ∞

0

e−βtuL(ct)dt− λ
∫ ∞
0

Ht(ct − I)dt

]
= sup

c
E
[∫ ∞

0

e−βt
{
uL(ct)− λeβtHt(ct − I)

}
dt

]
= E

[∫ ∞
0

e−βt (ũL(yt) + Iyt) dt

]
,

where ũL(·) is the dual utility function of the CES utility function and yt :=
λeβtHt. The dual utility ũL(y) is defined by as follows:

ũL(y) = sup
c
{uL(c)− yc} = uL(c∗)− yc∗,
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where c∗ satisfies the equation

(c∗)ρ−1 {α(c∗)ρ + (1− α)Lρ}
1−γ−ρ
ρ = y.

Remark 1. For later use, we define a quadratic equation,

f(m) :=
1

2
θ2m2 +

(
β − r − 1

2
θ2
)
m− β = 0, (7)

with two roots m+ > 1 and m− < 0.

Now we define a function

φ(t, y) := E
[∫ ∞

t

e−βs (ũL(ys) + Iys) ds

∣∣∣∣ yt = y

]
.

By Feymann-Kac formula, we derive the partial differential equation (PDE) as
follows:

Lφ(t, y) + e−βt (ũL(y) + Iy) = 0,

where the partial differential operator is given by

L :=
∂

∂t
+ (β − r)y ∂

∂y
+

1

2
θ2y2

∂2

∂y2
.

Let φ(t, y) = e−βtv(y), then we obtain the following ODE with respect to y,

1

2
θ2y2v′′(y) + (β − r)yv′(y)− βv(y) + ũL(y) + Iy = 0. (8)

Theorem 3.1. The value function of our optimization problem (6) is given by

V (x) = C1(y∗)m+ − 2

θ2(m+ − 1)(m− − 1)
Iy∗ + y∗x

+
2

θ2(m+ −m−)

{
(y∗)m−

∫ y∗

0

z−1−m− ũL(z)dz

+(y∗)m+

∫ ŷ

y∗
z−1−m+ ũL(z)dz +

ŷ1−m+I

1−m+
(y∗)m+

}
,

where ŷ satisfies the following algebraic equation

ũL(ŷ) = −m−ŷm−

∫ ŷ

0

z−1−m− ũL(z)dz +

(
θ2(m+ − 1)ν

2r
+

1

m− − 1

)
Iŷ,

C1 = − 2m−ŷ
m−−m+

θ2m+(m+ −m−)

∫ ŷ

0

z−1−m− ũL(z)dz

+

(
ν

r
+

2m−
θ2(m+ −m−)(m− − 1)

)
I

m+
ŷ1−m+ ,
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and y∗ is determined from the following algebraic equation

x = −m+C1(y∗)m+−1 +
2

θ2(m+ − 1)(m− − 1)
I

− 2

θ2(m+ −m−)

{
m−(y∗)m−−1

∫ y∗

0

z−1−m− ũL(z)dz

+m+(y∗)m+−1
∫ ŷ

y∗
z−1−m+ ũL(z)dz +

m+ŷ
1−m+I

1−m+
(y∗)m+−1

}
.

Proof. We use the method of variation of parameters to derive the solution to
the Cauchy equation (8) as follows:

v(y) = C1y
m+ +

2

θ2(m+ −m−)

{
ym−

∫ y

0

z−1−m− ũL(z)dz

+ym+

∫ ŷ

y

z−1−m+ ũL(z)dz +
ŷ1−m+

1−m+
Iym+

}

− 2

θ2(m+ − 1)(m− − 1)
Iy,

where m+ > 1 and m− < 0 are two roots of the quadratic equation (7), and
ŷ > 0 is the dual variable level corresponding to the negative wealth level νI/r.
The negative wealth constraint (4) implies two free boundary conditions (see
Dybvig and Liu [3] and Lim and Shin [9])

v′(ŷ) = ν
I

r
, v′′(ŷ) = 0. (9)

The boundary conditions (9) implies that ŷ is the solution to the following
algebraic equation

ũL(ŷ) = −m−ŷm−

∫ ŷ

0

z−1−m− ũL(z)dz +

(
θ2(m+ − 1)ν

2r
+

1

m− − 1

)
Iŷ

and

C1 = − 2m−ŷ
m−−m+

θ2m+(m+ −m−)

∫ ŷ

0

z−1−m− ũL(z)dz

+

(
ν

r
+

2m−
θ2(m+ −m−)(m− − 1)

)
I

m+
ŷ1−m+ .

Now we use the Legendre inverse transform formula,

V (x) = inf
y>0
{v(y) + yx}
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to derive the value function

V (x) = C1(y∗)m+ − 2

θ2(m+ − 1)(m− − 1)
Iy∗ + y∗x

+
2

θ2(m+ −m−)

{
(y∗)m−

∫ y∗

0

z−1−m− ũL(z)dz

+(y∗)m+

∫ ŷ

y∗
z−1−m+ ũL(z)dz +

ŷ1−m+I

1−m+
(y∗)m+

}
,

where y∗ is determined from the following algebraic equation

x = −m+C1(y∗)m+−1 +
2

θ2(m+ − 1)(m− − 1)
I

− 2

θ2(m+ −m−)

{
m−(y∗)m−−1

∫ y∗

0

z−1−m− ũL(z)dz

+m+(y∗)m+−1
∫ ŷ

y∗
z−1−m+ ũL(z)dz +

m+ŷ
1−m+I

1−m+
(y∗)m+−1

}
.

�

Theorem 3.2. The optimal consumption c∗t and portfolio π∗t are given by

c∗t = ξt

and

π∗t =
θ

σ
y∗t v
′′(y∗t )

=
θ

σ

[
m+(m+ − 1)C1(y∗t )m+−1

+
2

θ2(m+ −m−)

{
m−(m− − 1)(y∗t )m−−1

∫ y∗t

0

z−1−m− ũL(z)dz

+m+(m+ − 1)(y∗t )m+−1
∫ ŷ

y∗t

z−1−m+ ũL(z)dz − (m+ −m−)(y∗t )−1ũL(y∗t )

−m+Iŷ
1−m+(y∗t )m+−1

}]
,
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(a) Optimal consumption (β = 0.07, r =
0.01, µ = 0.05, σ = 0.2, γ = 2, α =
0.5, L = 0.5, I = 1, ρ→ 0)
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(b) Optimal portfolio (β = 0.07, r =
0.01, µ = 0.05, σ = 0.2, γ = 2, α =
0.5, L = 0.5, I = 1, ρ→ 0)

Figure 1. Optimal consumption/portfolio with various values
of ν

where y∗t and ξt satisfy the following algebraic equations

xt = −m+C1(y∗t )m+−1 +
2

θ2(m+ − 1)(m− − 1)
I

− 2

θ2(m+ −m−)

{
m−(y∗t )m−−1

∫ y∗t

0

z−1−m− ũL(z)dz

+m+(y∗t )m+−1
∫ ŷ

y∗t

z−1−m+ ũL(z)dz +
m+ŷ

1−m+I

1−m+
(y∗t )m+−1

}
and

(ξt)
ρ−1 {α(ξt)

ρ + (1− α)Lρ}
1−γ−ρ
ρ = y∗t ,

respectively.
Remark 2 (Numerical Implications).
From Figures 1(a) and 1(b), we obtain the optimal consumption and investment
under various values of ν. We see that the optimal consumption and invest-
ment become lower, as ν decreases, i.e., the negative wealth constraint becomes
tighter. This is because the strong constraint limits the financial behavior of
the agent much more.

4. Concluding Remarks

We consider the optimal consumption and portfolio selection problem with
CES utility and a negative wealth constraint. We obtain the closed-form so-
lution using the martingale approach and give some numerical results. In this
paper, basically we extend the works of Merton [10, 11] with CES utility and a
negative wealth constraint. Also it is meaningful to consider this problem with
a voluntary retirement option as a future research work.
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