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THE AVERAGING VALUE OF A SAMPLING OF THE

RIEMANN ZETA FUNCTION ON THE CRITICAL LINE

USING POISSON DISTRIBUTION

Sihun Jo

Abstract. We investigate the averaging value of a random sampling

ζ(1/2 + iXt) of the Riemann zeta function on the critical line. Our result
is that if Xt is an increasing random sampling with Poisson distribution,

then

Eζ(1/2 + iXt) = O(
√

log t),

for all sufficiently large t in R.

1. Introduction

The behaviour of the Riemann zeta function on the critical strip is one of
the most important subjects in Number theory. Especially, the behaviour of
the Riemann zeta function along the Re(z) = 1

2 has received many Number
theorists’ attention. The famous conjecture about the behaviour along Re(z) =
1
2 is known as Lindelöf Hypothesis that the absolute value of ζ( 1

2 + it) is less
than tε as t→∞. (cf. [3], [4])

To overcome difficulties about estimations of ζ( 1
2 + it), there are various

attempts using probabilitic theory. Lifshits and Weber [2] researched the be-
haviour of the Riemann zeta function ζ( 1

2 +it), when t is sampled by the Cauchy
random walk. After that, Jo and Yang [1] studied the behaviour of the Rie-
mann zeta function ζ( 1

2 + it), when t is sampled by the Gamma distribution.
In this paper, we study the behaviour of the Riemann zeta function ζ(s) along
the critical strip s = 1/2 + it, when t is sampled by the Poisson distribution.

The following is the main result.

Theorem 1.1. Let Xt denote the Poisson process with E(Xt) = t and Var(Xt) =
t. Then for all sufficiently large t,

Eζ(1/2 + iXt) = O(
√

log t).
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Because the Poisson process is increasing with mean value t and its variance
t, we can use this process to explain the behaviour of ζ( 1

2 + it) as t→∞. The
definition and basic properties of the Poisson process are explained in the next
section. In this paper, we use the Landau notation f = O(g), which means that
|f(x)| ≤ Cg(x) for some constant C and the Vinogradov notation f � g which
is equivalent to f = O(g).

2. Preliminaries

2.1. Poisson process

The Poisson distribution is the discrete probability distribution of the number
of events that occur in an interval time period.

It is said that a discrete random variable Xt has a Poisson distribution with
parameter t > 0 if the probability mass function of X is given by

P (Xt = k) =
tke−t

k!

for k = 0, 1, 2, · · · .
We can get that its average value is E(Xt) =

∑∞
k=0 k

tke−t

k! = t, and its

variance is E|Xt|2 − |EXt|2 = t. And it is well known that the characteristic
function has the following form:

ϕXt(u) := E(eiuXt) = exp(t(eiu − 1)).(1)

3. Proof of Theorem

First, we prove an analytic continuation of the Riemann zeta function as
follows:

Lemma 3.1. Let {u} be the fractional part of u. Then for 0 < σ < 1, we have

ζ(s) = 1−
∫ 1

0

u−sdu+

∫ ∞
1

{u} d
du
u−sdu.

Proof. Note that for σ > 1,

ζ(s) = 1 +

∫ ∞
1

u−sd[u] = 1 +

∫ ∞
1

u−sdu−
∫ ∞
1

u−sd{u}.

Using an integration by parts, we get an analytic continuation of ζ(s) into the
half-plane σ > 0 as follows:

ζ(s) = 1 +

[
u1−s

1− s

]∞
1

+

∫ ∞
1

{u} d
du
u−sdu = 1− 1

1− s
+

∫ ∞
1

{u} d
du
u−sdu.

�

From this, we estimate the mean value of the sampling of the Riemann zeta
function using Poisson distribution.
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Proof of Theorem 1.1. By Lemma 3.1 and the fact E(eiuXt) = exp(t(eiu − 1)),
we have that

Eζ(1/2 + iXt)

= 1−
∫ 1

0

u−1/2 exp(t(e−i log u − 1))du+

∫ ∞
1

{u} d
du

(
u−1/2 exp(t(e−i log u − 1))

)
du

= 1−
∫ 1

0

u−1/2 exp(t(u−i − 1))du+

∫ ∞
1

{u} d
du

(
u−1/2 exp(t(u−i − 1))

)
du

=: 1 +A+B.

(i) We estimate the integral A.
Note that

d

du
exp(t(u−i − 1)) = −i exp(t(u−i − 1))tu−i−1.(2)

From an integration by part, we have

∫ 1

0

u−1/2 exp(t(u−i − 1))du

=
i

t

∫ 1

0

u1/2+i
d

du
exp(t(u−i − 1))du

=
i

t

[
u1/2+i exp(t(u−i − 1))

]1
0
− i/2− 1

t

∫ 1

0

u−1/2+i exp(t(u−i − 1))du

=
i

t
− i/2− 1

t

∫ 1

0

u−1/2+i exp(t(u−i − 1))du = O
(
t−1
)
.

(ii) We consider the integral B.
Note that

exp(t(u−i − 1)) = exp
(
t
(

cos(log u)− 1− i sin(log u)
))
.

If, for all m ∈ Z,

| log u− 2πm| ≥
√

2 log t√
t

,

then

| exp(t(u−i − 1))| = exp
(
t
(

cos(log u) + 1
))
� exp

(
−t log t

t

)
= t−1,(3)

because

cos

(√
2 log t√
t

)
= 1− 1

2

(√
2 log t√
t

)2

+O
(

(log t)2/t2
)
.
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Let

S =

∞⋃
m=0

{
u ∈ R

∣∣∣∣ u ≥ 1, | log u− 2πm| <
√

2 log t√
t

}
.

We divide B into two parts.

B =

∫
S

{u} d
du

(
u−1/2 exp(t(u−i − 1))

)
du+

∫
SC
{u} d

du

(
u−1/2 exp(t(u−i − 1))

)
du

=: B1 +B2

case 1) First, we consider the integral for SC .
From (3), we can get

B2 =

∫
SC
{u}

(
−1

2
− itu−i

)
u−3/2 exp(t(u−i − 1))du

� t

∫ ∞
1

u−
3
2

1

t
du = O(1).

case 2) The integral for S is the following:

B1 =

∞∑
m=1

∫ e2πm+
√

2 log t/t

e2πm−
√

2 log t/t

{u} d
du

(
u−1/2 exp(t(u−i − 1))

)
du.

We divide B1 into two parts as following:

B1 = −
∑

m< 1
2π log t

∫ e2πm+
√

2 log t/t

e2πm−
√

2 log t/t

(
1

2
+ itu−i

)
{u}u−3/2 exp(t(u−i − 1))du

−
∑

m≥ 1
2π log t

∫ e2πm+
√

2 log t/t

e2πm−
√

2 log t/t

(
1

2
+ itu−i

)
{u}u−3/2 exp(t(u−i − 1))du

=: M + E.

First, we calculate the integral E.

E � t
∑

m≥ 1
2π log t

∫ e2πm+
√

2 log t/t

e2πm−
√

2 log t/t

u−3/2du� 2t
∑

m≥ 1
2π log t

e−πm
(√

log t√
t

)
�
√

log t.

Next, we calculate the integral M .
Note that
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∫ e2πm+
√

2 log t/t

e2πm−
√

2 log t/t

(
1

2
+ itu−i

)
{u}u−3/2 exp(t(u−i − 1))du

=

∫ [e2πm+
√

2 log t/t]

[e2πm−
√

2 log t/t]

(
1

2
+ itu−i

)
{u}u−3/2 exp(t(u−i − 1))du

+

∫ e2πm+
√

2 log t/t

[e2πm+
√

2 log t/t]

(
1

2
+ itu−i

)
{u}u−3/2 exp(t(u−i − 1))du

−
∫ e2πm−

√
2 log t/t

[e2πm−
√

2 log t/t]

(
1

2
+ itu−i

)
{u}u−3/2 exp(t(u−i − 1))du

=: M1 +M2 +M3.

From an integration by parts, we get

M2 =
1

2

∫ e2πm+
√

2 log t/t

[e2πm+
√

2 log t/t]

(
u− [e2πm+

√
2 log t/t]

)
u−3/2 exp(t(u−i − 1))du

+ it

∫ e2πm+
√

2 log t/t

[e2πm+
√

2 log t/t]

(
u− [e2πm+

√
2 log t/t]

)
u−3/2−i exp(t(u−i − 1))du

� 1

t
e−πm

(
1

2
+ t

)
� e−πm.

using (2).
Similarly, we have M3 � e−πm. M1 is the following:

M1 = −1

2

∫ [e2πm+
√

2 log t/t]

[e2πm−
√

2 log t/t]

{u}u−3/2 exp(t(u−i − 1))du

− it
∫ [e2πm+

√
2 log t/t]

[e2πm−
√

2 log t/t]

{u}u−3/2−i exp(t(u−i − 1))du

=: M1
1 +M2

1 .
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Using (2), we have

M2
1 = −it

[e2πm+
√

2 log t/t]−1∑
k=[e2πm−

√
2 log t/t]

∫ k+1

k

(u− k)u−3/2−i exp(t(u−i − 1))du

= −it
[e2πm+

√
2 log t/t]−1∑

k=[e2πm−
√

2 log t/t]

([
(u− k)

u−1/2i

t
exp(t(u−i − 1))

]k+1

k

− i
∫ k+1

k

u−1/2

t

(
1− (u− k)u−1

2

)
exp(t(u−i − 1))du

)

= −i
[e2πm+

√
2 log t/t]−1∑

k=[e2πm−
√

2 log t/t]

k−
1
2 � eπm

√
log t√
t
.

Similarly, we have

M1
1 �

1

t
eπm
√

log t√
t
.

From these facts, we have

M �
∑

m< 1
2π log t

(
eπm
√

log t√
t

+ e−πm
)
�
√

log t.

Because E �
√

log t, we have

B1 = M + E �
√

log t.

Hence, from case 1 and case 2, we can get that B �
√

log t.
Therefore we can know that

Eζ(1/2 + iXt)�
√

log t

and the proof is complete. �
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