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AN APPROXIMATED EUROPEAN OPTION PRICE UNDER

STOCHASTIC ELASTICITY OF VARIANCE USING MELLIN

TRANSFORMS

So-Yeun Kim and Ji-Hun Yoon∗

Abstract. In this paper, we derive a closed-form formula of a second-

order approximation for a European corrected option price under stochas-
tic elasticity of variance model mentioned in Kim et al. (2014) [1] [J.-H.

Kim, J Lee, S.-P. Zhu, S.-H. Yu, A multiscale correction to the Black-

Scholes formula, Appl. Stoch. Model. Bus. 30 (2014)]. To find the
explicit-form correction to the option price, we use Mellin transform ap-

proaches.

1. The review of stochastic elasticity of variance(SEV) model

This paper is a continuation of the research of Kim et al. [1] on the pricing of
a European option under stochastic elasticity of variance(SEV) model. First of
all, we review an underlying asset price model given by the following stochastic
differential equations(SDEs)

dXt = µXtdt+ σX
1−γf(Yt)
t dW x

t , (1)

dYt = α(m− Yt)dt+ βdW y
t (2)

under a market probability measure, where µ is a return rate, γ, m, α and β
are some constants, f is a smooth function with 0 ≤ c1 ≤ f ≤ c2 ≤ 1

2γ for

some constants c1 and c2 (cf. Karatzas & Shreve, 1991), and W x
t and W y

t are
correlated Brownian motions. As we can see in Kim et. al. [1], to illustrate
a stochastic elasticity of variance(SEV) model, which is an extended version of
a constant elasticity of variance(CEV) model, we choose a fast mean-reverting
Ornstein-Uhlenbeck(OU) process Yt. The process Yt is an ergodic process whose
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typical time to return to the mean level of its long-run distribution. Here, the
term ”mean reverting” refers to the characteristic time it takes for a process
to get back to the mean level of its invariant distribution. We call the α the
rate of mean-reversion. As mean reversion rate α gets larger, the process Yt
in (1.2) has a tendency to revert the long-run mean level m regardless of the
time. We call the model (2.1) mean-reverting OU process because the volatility
is a monotonic function of a process Yt whose drift pulls it towards the mean
value m. The volatility is correspondingly pulled towards approximately f(m).
In this case, the process Yt has the invariant distribution which is normal with

N (m, ν2), where ν2 = β2

2α which can be mentioned by the standard deviation
of the invariant distribution of Yt. Meanwhile, if mean reversion rate α goes to
infinity, the underlying asset price Xt is close to the CEV diffusion. In addition,
if γ goes to zero, the given model approaches the geometric Brownian motion
model. So, we have two small parameters representing the inverse of mean
reversion rate α and the parameter γ, that is, ε and δ satisfying ε = 1

α and

δ = γ2, respectively.
No-arbitrage pricing theory describes that option prices have the expectation

representation of discounted payoffs in terms of a risk-neutral measure. Since
(1.1)-(1.2) represent incomplete markets, there is a chance of more than one
equivalent martingale measure. By utilizing ς (the market prices of volatility
risk), the processes defined by

dW x∗
t = dW x

t +
µ− r

σX
−γf(Yt)
t

dt,

dW y∗
t = dW y

t + ς(Yt)dt,

are standard Brownian motions under a risk-neutral measure Q. Here, ς is as-
sumed to be smooth bounded function of y only. If we assume that ( µ−r

σX
−γf(Yt)
t

, ς(Yt))

satisfies the Novikov condition, by using the Girsanov theorem, the above model
dynamics can be transformed into

dXt = rXtdt+ σX
1−γf(Yt)
t dW x∗

t , (3)

dYt =

[
1

ε
(m− Yt)−

1√
ε
ν
√

2Λ(Yt)

]
dt+

1√
ε
ν
√

2 dW y,∗
t (4)

under the equivalent martingale measure Q, where r is a risk-free interest rate,
the correlation of two standard Brownian motions, W x,∗

t and W y,∗
t is given by

d〈W x,∗,W y,∗〉t = ρxydt and Λ(Yt) =
ρxy(µ−r)
f(Yt)

+ ς(Yt)
√

1− ρxy2.

The risk neutral valuation is the pricing of a contingent claim in the equivalent
martingale measure. Hence, the option price under the stochastic elasticity of
variance model is evaluated as the expected discounted payoff of the contingent
claim under the equivalent martingale measure Q, which is given by the formula

P ε,γ(t, x, y) = EQ[e−r(T−t)h(XT )|Xt = x, Yt = y],
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where h(XT ) is the payoff of the option at time T and r is the risk free rate of
interest over [t, T ].

Then, by the application of the Feynman-Kac formual(cf. Oksendal, [2]), the
European put option price with exercise price K at the expiration T expressed
by P (t, x, y) has the following partial differential equation(PDE)

∂P ε,γ

∂t
+

1

2
σ2x2(1−f(y)

√
δ) ∂

2P ε,γ

∂x2
+ rx

∂P ε,γ

∂x
− rP ε,γ

+
1√
ε

(
ρxyν

√
2σx1−f(y)

√
δ ∂

2P ε,γ

∂x∂y
− ν
√

2Λ(x, y)
∂P ε,γ

∂y

)
+

1

ε

(
ν2
∂2P ε,γ

∂y2
+ (m− y)

∂P ε,γ

∂y

)
= 0,

where P ε,γ(T, x, y) = h(x) = (K − x)+.
Based on the framework introduced by [1], if we use operators defined by

L0 := ν2
∂2

∂y2
+ (m− y)

∂

∂y
, L10 := ν

√
2

(
ρxyx

∂2

∂x∂y
− Λ(y)

∂

∂y

)
,

L11 := −σρxyν
√

2xf(y) lnx
∂2

∂x∂y
, L12 := σρxy

ν√
2
xf2(y)(lnx)2

∂2

∂x∂y
,

L20 :=
∂

∂t
+

1

2
σ2x2

∂2

∂x2
+ rx

∂

∂x
− r· := LBS ,

L21 := −σ2x2f(y) lnx
∂2

∂x2
, L22 := σ2x2f2(y)(lnx)2

∂2

∂x2
,

(5)

we can rewrite the above equation as follows :

Lε,δP ε,δ(t, x, y) = 0, P ε,δ(T, x, y) = h(x), t < T,

Lε,δ =
1

ε
L0 +

1√
ε

(
L10 +

√
δL11 + δL12 + · · ·

)
+
(
L20 +

√
δL21 + δL22 + · · ·

)
.

(6)

Note that L20 is exactly an operator corresponding to the Black-Scholes model.
Notation LBS may be used instead of L20 for emphasis.

2. European option pricing with stochastic elasticity of
variance(SEV) model

In this section, we review European option pricing based on the stochastic
elasticity of variance(SEV) model. As you can see in Kim et al. [1], they pre-

sented the analytic formula of the correction terms, P δ1,0, P δ,ε1,1 and P δ2,0, which
are given by the double integral forms. By using multiscale analysis, the theory
of Poisson equation and the change of variable to solve the given partial differ-
ential equations(PDEs), they solved the analytic solutions of the leading order
term and the correction terms on European put option price under SEV model.
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Remark 1 As mentioned in Kim et al. [1], they have derived an asymp-
totic solution of European put option price P ε,δ(t, x, y) by using the asymptotic

expansion P ε,δ(t, x, y) =
∑∞
i=0,j=0 δ

i
2 ε

j
2Pi,j(t, x, y) and the theory of the Pois-

son equation. Then, the asymptotic solution of European put option price
P ε,δ(t, x, y) is expressed by

P ε,δ(t, x, y) ≈ P̃ (t, x) = P0,0(t, x) +
√
δP1,0(t, x) +

√
δεP1,1(t, x) + δP2,0(t, x),

= P0,0(t, x) + P δ1,0(t, x) + P δ,ε1,1(t, x) + P δ2,0(t, x),

(7)

where P0,0(t, x) is the solution of Black-Scholes PDE satisfying

∂P0,0

∂t
+

1

2
σ2x2

∂2P0,0

∂x2
+ rx

∂P0,0

∂x
− P0,0 = 0, (8)

then the explicit formula of Black-Scholes put option with the volatility σ given
by

P0,0(t, x) = Ke−r(T−t)N (−d2)− xN (−d1),

d1 =
1

σ
√
T − t

[
log
( x
K

)
+

(
r +

σ2

2

)
(T − t)

]
,

d2 = d1 − σ
√
T − t.

(9)

and P δ1,0, P δ,ε1,1 and P δ2,0 are the solutions that satisfy the following nonhomoge-
nous PDEs:

∂P δ1,0
∂t

+
1

2
σ2x2

∂2P δ1,0
∂x2

+ r

(
x
∂P δ1,0
∂x

− P δ1,0

)
=V δ1,0x

2 lnx
∂2P0,0

∂x2
,

P δ1,0(T, x) = 0, 0 ≤ t ≤ T,

∂P δ,ε1,1

∂t
+

1

2
σ2x2

∂2P δ,ε1,1

∂x2
+ r

(
x
∂P δ,ε1,1

∂x
− P δ,ε1,1

)
=V δ,ε1,1x

∂

∂x

(
x2 lnx

∂2P0,0

∂x2

)
+ Uδ,ε1,1x

2 lnx
∂2P0,0

∂x2
,

P δ,ε1,1(T, x) = 0, 0 ≤ t ≤ T, and

∂P δ2,0
∂t

+
1

2
σ2x2

∂2P δ2,0
∂x2

+ r

(
x
∂P δ2,0
∂x

− P δ2,0

)
=V δ2,0(x lnx)2

∂2PBS
∂x2

+ Uδ2,0x
2 lnx

∂2P1,0

∂x2
,

P δ2,0(T, x) = 0, 0 ≤ t ≤ T,

respectively, where V δ1,0 = −
√
δσ2〈f〉, V δ,ε1,1 = −

√
δερσ3ν

√
2〈ψ′〉, Uδ,ε1,1 =

√
δεσ2ν

√
2〈Λψ′〉,

V δ2,0 = −δσ2〈f2〉 and U δ2,0 = δσ2〈f〉. Also, P δ1,0 =
√
δP1,0, P δ,ε1,1 =

√
δεP1,1 and

P δ2,0 = δP2,0.
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3. The derivation of the explicit-closed form solutions of the leading
order price and the correction terms

In this section, we are trying to find the explicit-form solution of the leading
order price P0,0, the first correction term P δ1,0 and the second correction terms,

P δ,ε1,1 and P δ2,0 on the approximated European put option price described in (2.1).
In fact, the existence of the explicit-closed solution is very important not only in
analyzing the behavior of the option price with regard to the model parameter
but also in implementing option’s data fittings from option’s market data. This
is because it decreases the gap of the relative error between the market option
price and the model option price as well as reduces the computing time as the
option pricing model is calibrated in practice. Hence, to obtain the explicit-form
solution, we utilize Mellin transform techniques.

3.1. A review of the Mellin Transforms

To derive the explicit-form solution of the leading order price and the cor-
rection terms, we use the Mellin transform stated in [3]. For a locally Lebesgue
integrable function f(x), x ∈ R+, the Mellin transform M(f(x), w), w ∈ C is
defined by

M(f(x), w) := f̂(w) =

∫ ∞
0

f(x)xw−1dx,

and if a < Re(w) < b and c such that a < c < b exists, the inverse of the Mellin
transform is expressed by

f(x) =M−1(f̂(w)) =
1

2πi

∫ c+i∞

c−i∞
f̂(w)x−wdw.

3.2. The derivation of the leading order price P0,0

Most of all, the solution of P0,0 is the put option price of Black-Scholes model
and was given by (2.3). However, we are trying to solve the closed solution with
Mellin transform approaches. By denoting the Mellin transform of P0,0(t, x) as
p̂0(t, w), the Black-Scholes equation stated in (2.2) can be transformed into

dp̂0
dt

+

(
σ2

2
(w2 + w)− rw − r

)
p̂0 = 0, (10)

where p̂0(t, w) =
∫∞
0
P0,0(t, x)xw−1dx. Also, the solution of the ODE (3.1) is

expressed by p̂0(t, w) = θ̂(w)e−
1
2σ

2q(w)t, where q(w) = w2 + (1 − k1)w − k1,

k1 = 2r
σ2 and θ̂ is defined by the Mellin transform of the payoff function θ(x) =
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(K − x)+ as follows :

θ̂(w) =

∫ ∞
0

(K − x)+xw−1dx =

∫ K

0

(K − x)xw−1dx

=
Kw+1

w
− Kw+1

w + 1
=

Kw+1

w(w + 1)

Then, the inverse of the Mellin is

P0,0(t, x) =
1

2πi

∫ c+i∞

c−i∞
e

1
2σ

2q(w)(T−t)θ̂(w)x−wdw, (11)

and by applying the formula of integral transform and the convolution property
of the Mellin transform as shown in [4], we have the well-known Black-Scholes
formula of the European put option as follows :

P0,0(t, x) = Ke−r(T−t)N (−d2)− xN (−d1),

d1 =
1

σ
√
T − t

[
log

(
X

K

)
+

(
r +

σ2

2

)
(T − t)

]
,

d2 = d1 − σ
√
T − t.

3.3. The derivation of the correction terms P δ1,0, P
δ,ε
1,1 and P δ2,0

Next, to find the solution of P δ1,0(t, x) from the following PDE

∂P δ1,0
∂t

+
1

2
σ2x2

∂2P δ1,0
∂x2

+ r

(
x
∂P δ1,0
∂x

− P δ1,0

)
=V δ1,0x

2 lnx
∂2P0,0

∂x2
,

P δ1,0(T, x) = 0, 0 ≤ t ≤ T.

As mentioned above in the subsection (3.1), if we apply the inverse Mellin
transform to the right-hand side in (3.3), then

V δ1,0x
2 lnx

∂2P0,0

∂x2
=
V δ1,0x

2 lnx

2πi

∫ c+i∞

c−i∞
e

1
2σ

2q(w)(T−t)θ̂(w)
∂2x−w

∂x2
dw

=
V δ1,0
2πi

∫ c+i∞

c−i∞
w(w + 1)e

1
2σ

2q(w)(T−t)θ̂(w)x−w(lnx)dw

= −
V δ1,0
2πi

[
w(w + 1)e

1
2σ

2q(w)(T−t)θ̂(w)x−w
]c+i∞
c−i∞

+
V δ1,0
2πi

∫ c+i∞

c−i∞

∂w(w + 1)e
1
2σ

2q(w)(T−t)θ̂(w)

∂w
x−wdw

=
V δ1,0
2πi

∫ c+i∞

c−i∞

∂e
1
2σ

2q(w)(T−t)Kw+1

∂w
x−wdw.
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Similarly, by taking the inverse Mellin transform to the left-hand side of (3.3),
we obtain

dp̂10
dt

+

(
σ2

2
(w2 + w)− rw − r

)
p̂10 = V δ1,0

∂e
1
2σ

2q(w)(T−t)Kw+1

∂w
, (12)

where p̂10(t, w) is the Mellin transform of P δ1,0(t, x).

Lemma 1 The solution of the following ODE equation

dp̂10
dt

+

(
σ2

2
(w2 + w)− rw − r

)
p̂10 = f(t, w) (13)

is given by

p̂10(t, w) = −
∫ T

t

f(x,w)e
1
2σ

2q(w)(x−t)dx.

Therefore, by Lemma 1, we have

p̂10(t, w) = −V δ1,0
∫ T

t

∂e
1
2σ

2q(w)(T−x)Kw+1

∂w
e

1
2σ

2q(w)(x−t)dx

= −V δ1,0
∫ T

t

∂
(
1
2σ

2q(w)(T − x) + (w + 1) logK
)

∂w
e

1
2σ

2q(w)(T−x)Kw+1e
1
2σ

2q(w)(x−t)dx

= −V δ1,0
∫ T

t

(
1

2
σ2(2w + (1− k1))(T − x) + lnK

)
e

1
2σ

2q(w)(T−x)Kw+1e
1
2σ

2q(w)(x−t)dx

= −V δ1,0e
1
2σ

2q(w)(T−t)Kw+1

∫ T

t

(
1

2
σ2(2w + (1− k1))(T − x) + lnK

)
dx

= −V δ1,0e
1
2σ

2q(w)(T−t)Kw+1

(
1

4
σ2(2w + (1− k1))(T − t)2 + lnK(T − t)

)
.

Lemma 2 Let f(x) = 1
2πi

∫ c+i∞
c−i∞ f̂(w)x−wdw. For Re(α) ≥ 0, the inverse

Mellin transforms of f̂(w) = eα(w+β)2 , f̂(w) = weα(w+β)2 , f̂(w) = w2eα(w+β)2 ,
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f̂(w) = w3eα(w+β)2 and f̂(w) = w4eα(w+β)2 are given by the following equa-
tions, respectively,

1

2πi

∫ c+i∞

c−i∞
eα(w+β)2x−wdw =

1

2
π−

1
2α−

1
2xβe−

1
4α (ln x)2

1

2πi

∫ c+i∞

c−i∞
weα(w+β)2x−wdw =

1

2
π−

1
2α−

1
2

(
lnx

2α
− β

)
xβe−

1
4α (ln x)2

1

2πi

∫ c+i∞

c−i∞
w2eα(w+β)2x−wdw =

1

2
π−

1
2α−

1
2

(
(lnx)2

4α2
− β

α
lnx− 1

2α
+ β2

)
xβe−

1
4α (ln x)2 ,

1

2πi

∫ c+i∞

c−i∞
w3eα(w+β)2x−wdw =

1

2
π−

1
2α−

1
2

{
(lnx)3

8α3
− 3β

4α2
(lnx)2 +

(
3β2

2α
− 3

4α2

)
lnx

+
3β

2α
− β3

}
xβe−

1
4α (ln x)2 ,

1

2πi

∫ c+i∞

c−i∞
w4eα(w+β)2x−wdw =

1

2
π−

1
2α−

1
2

{
(lnx)4

16α4
− β

2α3
(lnx)3 +

(
3β2

2α2
− 3

4α2

)
(lnx)2

+

(
3β

α2
− 2β2

α

)
lnx+

3

4α2
− 3β

α
+ β4

}
xβe−

1
4α (ln x)2 ,

where β is a complex number.

Proof The proof of the computation of f̂(w) = eα(w+β)2 is presented by Yoon
[5]. By the similar method, we can obtain the rest of the above folmulas.

Hence, by using the inverse Mellin transform mentioned in the Subsection 3.1
and Lemma 2, we can obtain the solution of the first correction P δ1,0(t, x) as
follows :

P δ1,0(t, x) =
−V δ1,0

√
T − t(lnx+ lnK)

2σ
√

2π
e
− 1

2σ2(T−t)

(
ln x−lnK−σ

2(T−t)
2 (1−k1)

)2

,

where k1 = 2r
σ2 . By the similar method, if we use the procedure of the derivation

of P δ1,0(t, x), the Subsection 3.1 and the above Lemma 2, the explicit closed-form

solutions of the second correction terms, P δ,ε1,1 and P δ2,0(t, x) on the PDEs of P δ,ε1,1

and P δ2,0(t, x) mentioned in (2.4) are obtained as follows :

P δ,ε1,1(t, x) =
1

σ
√

2π(T − t)

[
V δ,ε1,1

{
1

2σ2

(
(lnx)2 − (lnK)2

)
− 1

4
(T − t)(1− k1)(lnx+ lnK)

− 1

2
(T − t)

}
− U δ,ε1,1

1

2
(T − t)(lnx+ lnK)

]
e
− 1

2σ2(T−t)

(
ln x−lnK−σ

2(T−t)
2 (1−k1)

)2

,
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and

P δ2,0(t, x) =
1

σ
√

2π(T − t)

[
−V δ2,0

{
(T − t)

3

(
(lnx)2 + lnx lnK

+ (lnK)2
)
− σ2(T − t)2

6

}(
V δ1,0

)2{ 1

8σ4
(lnx)4 +

(T − t)k1
8σ2

(lnx)3

+

(
− (lnK)2

4σ4
+
k1(T − t) lnK

8σ2

+(T − t)2
(

(1− k1)2

32
− (1− k1)

16
− 3

8

))
(lnx)2

+

(
(lnK)3

2σ4
+

(T − t)(1− 3k1)

4σ2
(lnK)2 +

(
3(1− k1)2

8
− 9(1− k1)

16

− k1
16

(
1− k1 +

2 lnK

σ2(T − t)

))
(T − t)2 lnK

− σ2(T − t)3

16
(1− k1)2(1 + k1)− 3k1(T − t)

8

)
lnx+

(lnK)4

8σ4

− (T − t)(lnK)3

8σ2
+

(
(T − t)
σ2

− (1− k1)(1 + k1)(T − t)2

32

)
(lnK)2

respectively.

4. Concluding Remarks

This article verifies that explicit closed-form solutions for second order ap-
proximation option price under a stochastic elasticity of variance (SEV) model
mentioned in Kim et al. [1] can be derived by making use of Mellin transform
approaches. Then, the Mellin transform enables us to change the complicated
homogeneous or nonhomogeneous PDEs into a simpler ODE or a reduced PDE
so that we can find the solution of the given PDEs more easily and effectively.
In addition, by obtaining the explicit-form solution, we can notice that the ex-
istence of the closed solution has a significant influence on the accuracy of the
option pricing error as well as the speed of option’s data fitting. Finally, the
Mellin transform methods help us to resolve the complexity of the calculation
of the PDE by comparison with the probabilistic techniques, Fourier trans-
forms, and the method of change of variables. Therefore, a lot of studies of the
Mellin transforms on financial instruments continue to be works in progress by
researchers.

References

[1] J.H. Kim, J. Lee, S.P. Zhu, S.H. Yu, A multiscale correction to the Black–Scholes formula.

Appl Stoch Model Bus 2014, 30, 753–765.



248 S.-Y. KIM AND J.-H. YOON

[2] B. Oksendal, Stochastic Differential Equations, Springer, New York, 2003.
[3] E. Hassan, K. Adem, A note on Mellin transform and partial differential equations,

International Journal of Pure and Applied Mathematics 2007, 34(4), 457–467.

[4] R. Panini, R.-P. Srivastav, Option pricing with Mellin transforms, Mathematical and
Computer Modelling 2004, 40, 43–56.

[5] J.H. Yoon, Mellin transform method for European option pricing with Hull-White sto-

chastic interest rate, Journal of Applied Mathematics (2014) Volume 2014, Article ID
759562, 7 page.

So-Yeun Kim

Department of Finance and Insurance, Hongik University, Sejong 30016, Republic
of Korea

E-mail address: s22kim@hongik.ac.kr

Ji-Hun Yoon
Department of Mathematics, Pusan National University, Pusan 46241, Republic

of Korea

E-mail address: yssci99@pusan.ac.kr


