Flexible Electronic를 위한 Intense Pulsed Light 이용 초고속, 저온 나노 구조 제어 기술

  • 김수진 (서울대학교 재료공학과.한국과학기술연구원 광전소재연구단) ;
  • 김형준 (과학기술연합대학원대학교 나노재료공학과.한국과학기술연구원 광전소재연구단) ;
  • 임정아 (한국과학기술연구원 광전소재연구단)
  • Published : 2018.06.01

Abstract

Keywords

References

  1. Lim, H. S, Kim, S. J, Jang, H. W, & Lim, J. A. J. Mater. Chem. C, 5, 7142 (2017). https://doi.org/10.1039/C7TC01848G
  2. H. J. Hwang, K. H. Oh and H. S. Kim, Sci. Rep., 6, 19696 (2016). https://doi.org/10.1038/srep19696
  3. H. S. Kim, S. R. Dhage, D. E. Shim and H. T. Hahn, Appl. Phys. A. Mater. Sci. Process., 97, 791 (2009). https://doi.org/10.1007/s00339-009-5360-6
  4. J. Ryu, H. S. Kim and H. T. Hahn, J. Electron. Mate., 40, 42 (2011). https://doi.org/10.1007/s11664-010-1384-0
  5. H. Kang, E. Sowade and R. R. Baumann, ACS Appl. Mater. Interfaces, 6, 1682 (2014). https://doi.org/10.1021/am404581b
  6. M. S. Rager, T. Aytug, G. M. Veith and P. Joshi, ACS Appl. Mater. Interfaces, 8, 2441 (2016). https://doi.org/10.1021/acsami.5b12156
  7. W. S. Han, J. M. Hong, H. S. Kim and Y. W. Song, Nanotechnology, 22, 395705 (2011). https://doi.org/10.1088/0957-4484/22/39/395705
  8. H. H. Khaligh and I. A. Goldthorpe, Nanoscale Res. Lett., 8, 235 (2013). https://doi.org/10.1186/1556-276X-8-235
  9. S. Ding, J. Jiu, Y. Gao, Y. Tian, T. Araki, T. Sugahara, S. Nagao, M. Nogi, H. Koga and K. Suganuma, ACS Appl. Mater. Interfaces., 8, 6190 (2016). https://doi.org/10.1021/acsami.5b10802
  10. S. Ding, J. Jiu, Y. Tian, T. Sugahara, S. Nagao and K. Suganuma, Phys. Chem. Chem. Phys, 17, 31110 (2015). https://doi.org/10.1039/C5CP04582G
  11. J. Jiu, M. Nogi, T. Sugahara, T. Tokuno, T. Araki, N. Komoda, K. Suganuma, H. Uchida and K. Shinozaki, J. Mater. Chem, 22, 23561 (2012). https://doi.org/10.1039/c2jm35545k
  12. Z. Zhong, K. Woo, I. Kim, H. Hwang, S. Kwon, Y. M. Choi, Y. Lee, T. M. Lee, K. Kim and J. Moon, Nanoscale, 8, 8995 (2016). https://doi.org/10.1039/C6NR00444J
  13. B. Y. Wang, T. H. Yoo, Y. W. Song, D. S. Lim and Y. J. Oh, ACS Appl. Mater. Interfaces, 5, 4113 (2013). https://doi.org/10.1021/am303268k
  14. R. L. Willix and W. M. Garrison, J. Phys. Chem, 69, 1579 (1965). https://doi.org/10.1021/j100889a022
  15. D. Zeng, J. Cheng, S. Ren, J. Sun, H. Zhong, E. Xu, J. Du and Q. Fang, React. Funct. Polym., 68, 1715 (2008). https://doi.org/10.1016/j.reactfunctpolym.2008.10.001
  16. J. Kang, J. Ryu, H. Kim and H. Hahn, J. Electron. Mater., 40, 2268 (2011). https://doi.org/10.1007/s11664-011-1711-0
  17. J. Jiu, M. Nogi, T. Sugahara, T. Tokuno, T. Araki, N. Komoda, K. Suganuma, H. Uchida and K. Shinozaki, J. Mater. Chem., 22, 23561 (2012). https://doi.org/10.1039/c2jm35545k
  18. K. h. Pyo, D. H. Lee, Y. Kim and J. W. Kim, J. Mater. Chem. C, 4, 972 (2016). https://doi.org/10.1039/C5TC04030B
  19. M. Grouchko, A. Kamyshny and S. Magdassi, J. Mater. Chem, 19, 3057 (2009). https://doi.org/10.1039/b821327e
  20. N. A. Luechinger, E. K. Athanassiou and W. J. Stark, Nanotechnology, 19, 445201 (2008). https://doi.org/10.1088/0957-4484/19/44/445201
  21. W. H. Chung, Y. T. Hwang, S. H. Lee and H. S. Kim, Nanotechnology, 27, 205704 (2016). https://doi.org/10.1088/0957-4484/27/20/205704
  22. S. Park, J. Her, D. Cho, M. M. Haque, J. H. Park and C. S. Lee, Mater. Trans, 53, 1502 (2012). https://doi.org/10.2320/matertrans.M2012137
  23. K. Murai, Y. Tokoi, H. Suematsu, W. Jiang, K. Yatsui and K. Niihara, Jpn. J. Appl. Phys, 47, 3726. (2008). https://doi.org/10.1143/JJAP.47.3726
  24. Z. Zhong, H. Lee, D. Kang, S. Kwon, Y. M. Choi, I. Kim, K. Y. Kim, Y. Lee, K. Woo and J. Moon, ACS Nano, 10, 7847 (2016). https://doi.org/10.1021/acsnano.6b03626
  25. I. Kim, Y. Kim, K. Woo, E. H. Ryu, K. Y. Yon, G. Cao and J. Moon, RSC Adv, 3, 15169 (2013). https://doi.org/10.1039/c3ra41480a
  26. H. J. Hwang, S. J. Joo and H. S. Kim, ACS Appl. Mater. Interfaces, 7, 25413 (2015). https://doi.org/10.1021/acsami.5b08112
  27. P. M. Ajayan, M. Terrones, A. de la Guardia, V. Huc, N. Grobert, B. Q. Wei, H. Lezec, G. Ramanath and T. W. Ebbesen, Science, 296, 705 (2002). https://doi.org/10.1126/science.296.5568.705
  28. D. Z. Guo, G. M. Zhang, Z. X. Zhang, Z. Q. Xue and Z. N. Gu, J. Phys. Chem. B, 110, 1571 (2006). https://doi.org/10.1021/jp055929q
  29. C. Srinivasan, Current Science, 90, 756 (2006).
  30. L. J. Cote, R. Cruz-Silva and J. Huang, J. Am. Chem. Soc., 131, 11027 (2009). https://doi.org/10.1021/ja902348k
  31. D. S. Eom, J. Chang, Y. W. Song, J. A. Lim, J. T. Han, H. Kim and K. Cho, J. Phys. Chem. C, 118, 27081 (2014). https://doi.org/10.1021/jp507451b
  32. A. Al-Hamry, H. Kang, E. Sowade, V. Dzhagan, R. D. Rodriguez, C. Müller, D. R. T. Zahn, R. R. Baumann and O. Kanoun, Carbon, 102, 236 (2016). https://doi.org/10.1016/j.carbon.2016.02.045
  33. N. Wang, B. D. Yao, Y. F. Chan and X. Y. Zhang, Nano Lett., 3, 475 (2003). https://doi.org/10.1021/nl034019m
  34. T. Gebel, M. Neubert, R. Endler, J. Weber, M. Vinnichenko, A. Kolitsch, W. Skorupa and H. Liepack, MRS Mater. Res. Soc., 1287 (2011).
  35. H. Y. Jin, J. Y. Kim, J. A. Lee, K. Lee, K. Yoo, D. K. Lee, B. Kim, J. Y. Kim, H. Kim, H. J. Son, J. Kim, J. A. Lim and M. J. Ko, Appl. Phys. Lett., 104, 143902 (2014). https://doi.org/10.1063/1.4871370
  36. T. H. Yoo, S. J. Kwon, H. S. Kim, J. M. Hong, J. A. Lim and Y. W. Song, RSC Adv., 4, 19375 (2014). https://doi.org/10.1039/c4ra01371a
  37. S. R. Dhage, H. S. Kim and H. T. Hahn, J. Electron. Mater., 40, 122 (2011). https://doi.org/10.1007/s11664-010-1431-x
  38. C. J. Stolle, T. B. Harvey, D. R. Pernik, J. I. Hibbert, J. Du, D. J. Rhee, V. A. Akhavan, R. D. Schaller and B. A. Korgel, J. Phys. Chem. Lett., 5, 304 (2014). https://doi.org/10.1021/jz402596v
  39. B. W. Lavery, S. Kumari, H. Konermann, G. L. Draper, J. Spurgeon and T. Druffel, ACS Appl. Mater. Interfaces, 8, 8419 (2016). https://doi.org/10.1021/acsami.5b10166
  40. L. Xu, L. Cheng, C. Wang, R. Peng and Z. Liu, Polym. Chem., 5, 1573 (2014). https://doi.org/10.1039/C3PY01196H
  41. M. Helgesen, J. E. Carle, B. Andreasen, M. Hosel, K. Norrman, R. Sondergaard and F. C. Krebs, Polym. Chem., 3, 2649 (2012). https://doi.org/10.1039/c2py20429k
  42. H. Y. Yang, J. M. Hong, T. W. Kim, Y. W. Song, W. K. Choi and J. A. Lim, ACS Appl. Mater. Interfaces, 6, 1495 (2014). https://doi.org/10.1021/am403964p
  43. J. Perelaer, P. J. Smith, D. Mager, D. Soltman, S. K. Volkman, V. Subramanian, J. G. Korvink and U. S. Schubert, J. Mater. Chem., 20, 8446 (2010). https://doi.org/10.1039/c0jm00264j
  44. J. Niittynen, E. Sowade, H. Kang, R. R. Baumann and M. Mantysalo, Sci. Rep., 5, 8832 (2015). https://doi.org/10.1038/srep08832
  45. J. Perelaer, R. Abbel, S. Wünscher, R. Jani, T. van Lammeren and U. S. Schubert, Adv. Mater., 24, 2620 (2012). https://doi.org/10.1002/adma.201104417
  46. B. Bockrath, J. K. Johnson, D. S. Sholl, B. Howard, C. Matranga, W. Shi and D. Sorescu, Science, 297, 192 (2002). https://doi.org/10.1126/science.297.5579.192
  47. T. Kuila, A. K. Mishra, P. Khanra, N. H. Kim and J. H. Lee, Nanoscale, 5, 52 (2013). https://doi.org/10.1039/C2NR32703A
  48. L. J. Cote, R. Cruz-Silva and J. Huang, J. Am. Chem. Soc.,131, 11027 (2009). https://doi.org/10.1021/ja902348k
  49. S. Gilje, S. Dubin, A. Badakhshan, J. Farrar, S. A. Danczyk and R. B. Kaner, Adv. Mater., 22, 419 (2010). https://doi.org/10.1002/adma.200901902
  50. M. Voelskow, R. A. Yankov and W. Skorupa, In Subsecond Annealing of Advanced Materials, Springer, 1-13 (2014).
  51. E. Della Gaspera, D. F. Kennedy, J. van Embden, A. S. Chesman, T. R. Gengenbach, K. Weber and J. J. Jasieniak, Adv. Funct. Mater., 25, 7263 (2015). https://doi.org/10.1002/adfm.201503421
  52. D. A. Melnick, J. Chem. Phys., 26, 1136 (1957). https://doi.org/10.1063/1.1743483
  53. A. J. Morfa, B. I. MacDonald, J. Subbiah and J. J. Jasieniak, Sol. Energy Mater. Sol. Cells, 124, 211 (2014). https://doi.org/10.1016/j.solmat.2014.02.002
  54. H. Y. Yang, H. W. Park, S. J. Kim, J. M. Hong, T. W. Kim, D. H. Kim and J. A. Lim, Phys. Chem. Chem.l Phys., 18, 4627 (2016). https://doi.org/10.1039/C5CP06989K