DOI QR코드

DOI QR Code

Temperature-dependent Luminescence Properties of Digital-alloy In(Ga1-zAlz)As

  • Cho, Il-Wook (Department of Physics, Kangwon National University) ;
  • Ryu, Mee-Yi (Department of Physics, Kangwon National University) ;
  • Song, Jin Dong (Center for Opto-Electronic Convergence Systems, Korea Institute of Science and Technology)
  • 투고 : 2018.05.30
  • 심사 : 2018.06.01
  • 발행 : 2018.05.30

초록

The optical properties of the digital-alloy $(In_{0.53}Ga_{0.47}As)_{1-z}/(In_{0.52}Al_{0.48}As)_z$ grown by molecular beam epitaxy as a function of composition z (z = 0.4, 0.6, and 0.8) have been studied using temperature-dependent photoluminescence (PL) and time-resolved PL (TRPL) spectroscopy. As the composition z increases from 0.4 to 0.8, the PL peak energy of the digital-alloy $In(Ga_{1-z}Al_z)As$ is blueshifted, which is explained by the enhanced quantization energy due to the reduced well width. The decrease in the PL intensity and the broaden FWHM with increasing z are interpreted as being due to the increased Al contents in the digital-alloy $In(Ga_{1-z}Al_z)As$ because of the intermixing of Ga and Al in interface of InGaAs well and InAlAs barrier. The PL decay time at 10 K decreases with increasing z, which can be explained by the easier carrier escape from InGaAs wells due to the enhanced quantized energies because of the decreased InGaAs well width as z increases. The emission energy and luminescence properties of the digitalalloy $(InGaAs)_{1-z}/(InAlAs)_z$ can be controlled by adjusting composition z.

키워드

참고문헌

  1. P. Cinguino, F. Genova, C. Rigo, C. Cacciatore, and A. Stano, Appl. Phys. Lett. 50, 1515 (1987). https://doi.org/10.1063/1.97817
  2. St. Kollakowski, E. H. Bottcher, A. Strittmatter, and D. Bimberg, Electron. lett. 34, 587 (1998). https://doi.org/10.1049/el:19980439
  3. S. D. McDougall, O. P. Kowalski, J. H. Marsh, and J. S. Aitchison, IEEE Photon. Technol. Lett. 11, 1557 (1999). https://doi.org/10.1109/68.806845
  4. D. Gready, G. Eisenstein, V. Ivanov, C. Gilfert, F. Schnabel, A. Rippien, J. P. Reithmaier, and C. Bornholdt, IEEE Photon. Technol. Lett. 26, 11 (2014). https://doi.org/10.1109/LPT.2013.2287502
  5. W. Rudno-Rudzinski, M. Syperek, A. Marynski, J. Andrzejewski, J. Misiewicz, S. Bauer, V. I. Sichkovskyi, J. P. Reithmaier, M. Schowalter, B. Gerken, A. Rosenauer, and G. Sek, Phys. Status Solidi A 215, 1700455 (2018). https://doi.org/10.1002/pssa.201700455
  6. J. D. Song, D. C. Heo, I. K. Han, J. M. Kim, Y. T. Lee, and S.-H. Park, Appl. Phys. Lett. 84, 873 (2004). https://doi.org/10.1063/1.1645666
  7. J. T. Woo, J. H. Kim, T. W. Kim, J. D. Song, and Y. J. Park, Phys. Rev. B 72, 205320 (2005). https://doi.org/10.1103/PhysRevB.72.205320
  8. J. D. Song, J. S. Yu, J. M. Kim, S. J. Bae, and Y. T. Lee, Appl. Phys. Lett. 80, 4650 (2002). https://doi.org/10.1063/1.1485132
  9. I.-W. Cho, H. R. Byun, M.-Y. Ryu, and J. D. Song, J. Korean Vac. Soc. 22, 321 (2013). https://doi.org/10.5757/JKVS.2013.22.6.321
  10. I.-W. Cho, M.-Y. Ryu, and J. D. Song, Thin Solid Films 636, 392 (2017). https://doi.org/10.1016/j.tsf.2017.06.035
  11. Y. C. Zhang, C. J. Huang, F. Q. Liu, B. Xu, J. Wu, Y. H. Chen, D. Ding, W. H. Jiang, X. L. Ye, and Z. G. Wang, J. Appl. Phys. 90, 1973 (2001) https://doi.org/10.1063/1.1385579
  12. Y.-F. Wu, J. C. Lee, T.-E. Nee, and J.-C. Wang, J. Lumin. 131, 1267 (2011). https://doi.org/10.1016/j.jlumin.2011.02.037
  13. W.-S. Liu, T.-F. Chu, and T.-H. Huang, Optics Express 22, 30963 (2014). https://doi.org/10.1364/OE.22.030963
  14. D. Heo, J. D. Song, I. K. Han, W. J. Choi, and Y. T. Lee, IEEE J. Quantum Electron. 49, 24 (2013). https://doi.org/10.1109/JQE.2012.2226018
  15. P. Offermans, P. M. Koenraad, J. H. Wolter, J. D. Song, J. M. Kim, S. J. Bae, and Y. T. Lee, Appl. Phys. Lett. 82, 1191 (2003). https://doi.org/10.1063/1.1555265
  16. M. Leroux, N. Grandjean, B. Beaumont, G. Nataf, F. Semond, J. Massies, and P. Gibart, J. Appl. Phys. 86, 3721 (1999). https://doi.org/10.1063/1.371242
  17. D. Heo, G.-H. Kim, and J. D. Song, J. Korean Phys. Soc. 69, 1225 (2016). https://doi.org/10.3938/jkps.69.1225
  18. Y. P. Varshni, Physica 34, 149 (1967). https://doi.org/10.1016/0031-8914(67)90062-6
  19. D. K. Gaskill, N. Bottka, L. Aina, and M. Mattingly, Appl. Phys. Lett. 56, 1269 (1990). https://doi.org/10.1063/1.102533
  20. H. Y. Kim, M.-Y. Ryu, and J. S. Kim, J. Lumin. 132, 1759 (2012). https://doi.org/10.1016/j.jlumin.2012.01.057
  21. L. M. Kong, J. F. Cai, Z. Y. Wu, Z. Gong, Z. C. Niu, and Z. C. Feng, Thin Solid Films 498, 188 (2006). https://doi.org/10.1016/j.tsf.2005.07.079
  22. J. H. Song, J. W. Lee, P. W. Yu, M.-Y. Ryu, J. Zhang, E. Kuokstis, J. W. Yang, and M. Asif Khan, Solid State Commun. 127, 661 (2003). https://doi.org/10.1016/S0038-1098(03)00522-2