DOI QR코드

DOI QR Code

Analysis of Mathematical Problem Based on Mathematical Problem Solving Competency

수학적 문제해결역량을 위한 평가 문항의 조건과 그 실제

  • Received : 2018.03.24
  • Accepted : 2018.05.14
  • Published : 2018.05.31

Abstract

This study suggests a framework for analyzing items based on the characteristics, and shows the relationship among the characteristics, difficulty, percentage of correct answers, academic achievement and the actual mathematical problem solving competency. Three mathematics educators' classification of 30 items of Mathematics 'Ga' type, on 2017 College Scholastic Ability Test, and the responses given by 148 high school students on the survey examining mathematical problem solving competency were statistically analyzed. The results show that there are only few items satisfying the characteristics for mathematical problem solving competency, and students feel ill-defined and non-routine items difficult, but in actual percentage of correct answers, routineness alone has an effect. For the items satisfying the characteristics, low-achieving group has difficulty in understanding problem, and low and intermediate-achieving group have difficulty in mathematical modelling. The findings can suggest criteria for mathematics teachers to use when developing mathematics questions evaluating problem solving competency.

Keywords

References

  1. 강옥기(2003). 수학과 학습 지도와 평가론(제2판). 서울: 경문사. Kang, O. K. (2003). Theories of instruction and evaluation in mathematics class, Seoul: Kyungmoon.
  2. 고호경, 이현숙(2007). 고등학교 수리영역 시험의 난이도 예측 요인 분석. 한국학교수학회논문집 10(1), 113-127. (Ko, H. K. & Yi, H. S. (2007). Factors of predicting difficulty of mathematics test items in college scholastic ability test. Journal of the Korean School Mathematics Society 10(1), 113-127.)
  3. 구자옥, 김성숙, 이혜원, 조성민, 박혜영(2016). OECD 국제 학업성취도 평가 연구:PISA2018 예비검사 시행 기반 구축, 한국교육과정평가원 연구 보고 RRE 2016-2-1. (Gu, J. O., Kim, S. S., Lee, H. W., Jo, S. M. & Park, H. Y. (2016). Research on OECD international academic achievement assessment: Establishing implementation basis of PISA 2018's preliminary test, Korea Institute for Curriculum and Evaluation Report RRE 2016-2-1.)
  4. 김미희, 김구연 (2013). 고등학교 교과서의 수학과제 분석. 학교수학 15(1), 37-59. (Kim, M. & Kim, G. Y. (2013). The analysis of mathematical tasks in the high school mathematics, School Mathematics 15(1), 37-59.)
  5. 김민경, 박은정, 허지연 (2012). '맥락성' 관점에서 본 수학교과서의 문제 분석. 한국학교수학회논문집 15(1), 1-25. (Kim, M. K., Park, E. J., & Heo, J. Y. (2012). An analysis on mathematics textbook problems focusing on 'contextualization'. Journal of the Korean School Mathematics Society 15(1), 1-25.)
  6. 김부윤, 이영숙(2003). 우리나라에서의 수학적 문제해결 연구. 수학교육 42(2), 137-157. (Kim, B. Y. & Lee, Y. S. (2003). A study of mathematical problem solving in Korea, The Mathematical Education 42(2), 137-157.)
  7. 김선희, 박경미, 이환철 (2015). 수학과 교육과정에 반영된 핵심역량의 국제적 동향 탐색. 수학교육 54(1), 65-81. (Kim, S. H., Park, K. M. & Lee, H. C. (2015). An exploration of international trends about the core competencies in mathematics curriculum, The Mathematical Education 54(1), 65-81.)
  8. 김성준, 문정화(2006). 유형별 맥락문제의 적용과 그에 따른 유형별 선호도 조사. 한국학교수학회논문집 9(2), 141-161. (Kim, S. J. & Moon, J. H. (2006). A study on the application of context problems and preference for context problems types. Journal of the Korean School Mathematics Society 9(2), 141-161)
  9. 김진호, 김인경(2011). 수학적 문제 해결 연구에 있어서 미래 연구 주제: 델파이 기법. 초등수학교육 14(2), 187-206. (Kim, J. H. & Kim, I. K. (2011). Future research topics in the field of mathematical problem solving: Using delphi method, Education of Primary School Mathematics 14(2), 187-206.)
  10. 김혜미(2016a). 수학 문제해결에 관한 국내 연구 동향 분석. 학습자중심교과교육연구 16(8), 831-850. (Kim, H. M. (2016) An analysis of the research trend in Korea regarding mathematical problem solving, Korean Association for Learner-centered Curriculum and Instruction 16(8), 831-850.)
  11. 김혜미(2016b). 수학 문제해결 역량 평가도구 개발에 관한 연구. 박사학위논문, 성균관대학교. Kim H. M. (2016 b). A study on the development of the assessment tool for mathematical problem solving competency. Unpublished doctoral dissertation, Sungkyunkwan University.
  12. 나미영, 권오남(2012년 4월). 실생활 맥락 문제에 대한 이해를 위한 중학교 교과서 분석 -중학교 1학년 문자와 식 단원 중심으로-, 한국수학교육학회 학술발표논문집 2012(1), (pp. 159-163) 서울. Na, M. Y. & Kwon, O. N. (2012, April). Analysis of middle school textbook for understanding of question with real life context - focusing on grade 7's letter and equation chapter-, The Proceedings of the Korean Society Mathematics Education 2012 Spring Conference on Mathematical Education, Seoul (159-163).
  13. 나귀수(2003). TIMSS-R 국제성취수준에 따른 우리나라 학생들의 수학 성취도 분석 -교육과정, 교과서의 관련성을 중심으로-. 수학교육학연구 13(3), 383-401. (Na, G. S. (2003). Korean students' mathematics achievement according to the TIMSS-R international benchmarksfocused on the relationship with mathematics curriculum and text-. Journal of Educational Research in Mathematics 13(3), 383-401.)
  14. 남진영, 정연준(2011). 중국의 대학입학 수학 시험 분석 연구. 학교수학 13(1), 1-17. (Nam, J. Y. & Joun, Y. J. (2011). A study on the Chinese national university entrance examination in mathematics, School Mathematics 13(1), 1-17.)
  15. 박정미, 이중권(2013). 동일한 수학적 상황에서 문제해결 능력 분석 연구: 방정식 부등식과 함수를 중심으로. 한국학교수학회논문집 16(4), 883-898. (Park, J. M. & Lee, J. K. (2013). An analysis of students'problem solving ability on the equivalent mathematics situations - Focused on equations, inequalities, and functions -. Journal of the Korean School Mathematics Society 16(4), 883-898.)
  16. 범아영, 이대현(2012). 분수의 연산과 크기 비교에서 맥락 문제와 비맥락 문제에 대한 학생들의 문제해결 방법 분석. 초등수학교육 15(3), 219-233. (Beom, A. Y. & Lee, D. H. (2012). Analysis on the problem-solving methods of students on contextual and noncontextual problems of fractional computation and comparing quantities, Education of Primary School Mathematics 15(3), 219-233.)
  17. 성창근(2012). 구조화정도가 다른 수학적 문제의 해결 능력과 인지적 변인의 관계. 박사학위논문, 한국교원대학교. Sung, C. G. (2012). The relationship between solving ability on mathematical problems with different level of sturucturedness and cognitive variables. Unpublished doctoral dissertation, Korea National University of Education.
  18. 송미영, 김성숙, 구자옥, 임해미, 박혜영, 한정아(2014), OECD 국제 학업성취도 평가연구: PISA2012 컴퓨터기반 평가 결과 분석, 한국교육과정 평가원 연구 보고 RRE 2014-4-2. (Song, M. Y., Kim, S. S., Koo, J. O., Lim, H. M., Park, H. Y. & Han, J. A. (2014). Research on OECD international academic achievement assessment: Analysis of result of PISA 2012 computer-based assessment, Korea Institute for Curriculum and Evaluation Report RRE 2014-4-2.)
  19. 양은경, 황우형(2005). 시리즈 A: 수학 학습유형과 문제 해결 전략. 수학교육 44(4), 565-586. (Yang, E. K. & Whang, W. H. (2005). Series A: Relationships between mathematical learning styles and the selection of mathematical problem solving strategies: Focused on the 1st grade high school students, The Mathematical Education 44(4), 565-586.)
  20. 이정무, 유진수, 이정아, 이경화(2016). 대학수학능력시험에서 통계적 소양 평가의 가능성 모색-SAT 통계 문항과의 비교를 중심으로. 수학교육학연구 26(3), 527-542. (Lee, J. M., You, J. S., Lee, J. A. & Lee, K. H. (2016). A study on KSAT for assessing statistical literacy by a comparative analysis with SAT. Journal of Educational Research in Mathematics 26(3), 527-542.)
  21. 이상하, 박도영, 박상욱, 최인봉, 구남욱, 이은경(2014). 미래사회 핵심역량 교수 학습 지원을 위한 교육평가 정책의 방향. 한국교육과정평가원 연구보고 RRE 2014-14. (Lee, S. H., Park, D. Y., Park, S. W., Choi, I. B., Goo, N. W., Lee, E. Y. (2014). The direction of educational assessment policy to support teaching of 21st century skills, Korea Institute for Curriculum and Evaluation Report (RRE 2014-14).
  22. 이광호, 고호경(2010). 고등학교 수학 문제의 난이도 요 인 분석을 위한 사례 연구. 한국학교수학회논문집 13(2), 323-343. (Lee, G. H. & Ko, H. K. (2010). A study on cases of difficulty variables in high school mathematics items. Journal of the Korean School Mathematics Society 13(2), 323-343.)
  23. 임해미(2013). OECD PISA 수학 소양 평가의 특징 및 문항 특성 분석. 교과교육학연구 17(4), 971-990. (Lim, H. (2013). The trends and what's the new in the OECD PISA and its items. Journal of Research in Curriculum Instruction 17(4), 971-990.)
  24. 조미영(2010). 창의적 문제 해결력 문항의 평가 기준 개발 및 적용. 교육과정평가연구 13(2), 309-333. (Cho, M. Y., Mun, K. J., Kim, S. W. (2010). The devolopment and application of evaluating standards for creative problem solving items, The Journal of Curriculum and Evaluation 13(2), 309-333.)
  25. 조윤동, 남진영, 고호경(2009). 한,중,미,일의 전국단위 대학입학시험 수학과 출제체제 비교를 통한 수리 영역 개선 방안 연구. 학교수학 11(4), 547-565. (Jo, Y. D., Nam, J. Y. & Go, H. K. (2009). A study on improvement methods in mathematics by comparing examinations in mathematics in the college scholastic ability test at a nationwide level in Korea, China, America, and Japan, School Mathematics 11(4), 547-565.)
  26. 조현영, 손민호(2014). 일상적 문제해결과정에서의 실천적 지식의 사용에 관한 연구 : 학교 학습에는 시사점 탐색. 교육문화연구 20(1), 5-17. (Cho, H. & Shon, M. (2014). Knowledge-in-action in routine problem solving. Journal of Education & Culture 20(1), 5-17.)
  27. 한인기(2001). 수학 문제의 구조 규명에 관한 연구, 한국수학교육학회 시리즈E 11, 279-290 (Han, I. K. (2001). Research on structure of mathematical problem, Communication of Mathematical Education, 11, 279-290.)
  28. 한혜정, 권점례, 김영은, 이주연, 곽상훈, 김정윤, 한총희, 박은아, 김현경, 이영미, 강민규, 송민영, 배영권, 서영진 (2017). 2015 개정 총론 및 교과 교육과정 적용 방안. 한국교육과정평가원 연구보고 PIM 2017-5-1. (Han, H. J. & Gwon, J. R. (2017). 2015 curriculum outline and method of applying curriculum, Korea Institute for Curriculum and Evaluation Report (PIM 2017-5-1).)
  29. 황혜정, 나귀수, 최승현, 박경미, 임재훈, 서동엽 (2007). 수학교육학신론, 서울:문음사. Hwang, H. J., Na, G. S., Choi, S. H., Park, K. M., Lim, J. H., & Seo, D. Y. (2007). Mathematical Education. Seoul: Moonumsa.
  30. Altun, M., Bozkurt, I. (2017). A new classification proposal for mathematical literacy problems. Education and Science 42(190), 171-188.
  31. Chambers, D.W. (1993). Toward a competency-based curriculum. Journal of Dental Education, 57(11), 790-793.
  32. Crawford, C. B. (1975). Determining the number of interpretable factors. Psychological Bulletin 82, 226-237. https://doi.org/10.1037/h0076374
  33. El Masri, Y. H., Ferrara S., Foltz, P. W. & Baird, J. (2017). Predicting item difficulty of science national curriculum tests: the case of key stage 2 assessments. The Curriculum Journal, 28(1), 59-82. https://doi.org/10.1080/09585176.2016.1232201
  34. Freudenthal, H. (2002). Revisiting mathematics education: China lectures. Series: Mathematics Education Library, 9, New York : Springer. eBook Colleciont(EBSCOhost).
  35. Gravemeijer, K. & Doorman, M. (1999). Context problems in realistic mathematics education: A calculus course as an example. Educational Studies in Mathematics 39, 111-129. https://doi.org/10.1023/A:1003749919816
  36. Gregory S., Michael E. D. & Lisa D. B. (1995). Cognitive processes in well-defined and ill-defined problem solving. Applied Cognitive Psychology 9, 523-538. https://doi.org/10.1002/acp.2350090605
  37. Hair, J. F., Anderson, R. E., Tatham, R. L. & William, B. (1995). Multivariate data analysis (4th edition). New Jersey: Pearson Prentice Hall.
  38. Hebel, F. L., Montpied, P., Tiberghien, A. & Fontanieu, V. (2017). Sources of difficulty in assessment: Example of PISA science items. International Journal of Science Education 39(4), 468-487. https://doi.org/10.1080/09500693.2017.1294784
  39. Jonassen, D. H. (2000). Toward a design theory of problem solving, Educational Technology, Research and Development 48(4), 63-85.
  40. Jonassen, D. H. (2004). Learning to solve problems. San Francisco, CA: Pfeiffer.
  41. Jurdak, M. (2006). Contrasting perspectives and performance of high school students on problem solving in real world, situated, and school contexts. Educational Studies in Mathematics 63(3), 283-301. https://doi.org/10.1007/s10649-005-9008-y
  42. Kitchener, K. S. (1983). Cognition, metacognition, and epistemic cognition: A three-level model of cognitive processing. Human Development 4, 222-232.
  43. Krulik, S. & Rudnick, J. (1989). Problem solving: A handbook for senior high school teachers. Boston: Allyn & Bacon.
  44. Lester, F. K, Jr. (2013). Thoughts about research on mathematical problem-solving instruction, The Mathematics Enthusiast 10(1), 245-278.
  45. Mwei, P. K. (2017). Problem solving: How do in-service secondary school teachers of mathematics make sense of a non-routine problem context? International Journal of Research in Education and Science 3(1), 31-41.
  46. National Council of Teachers of Mathematics (2000). Principles and standards for school mathematics. Reston, VA: Author.
  47. OECD (2013). PISA 2012 assessment and analytical framework: Mathematics, reading, science, problem solving and financial literacy. OECD.
  48. Pehkonen, E., Naveri, L. & Laine, A. (2013). On teaching problem solving in school mathematics, C E P S Journal 3(4), 9-23.
  49. Pettersen, A. & Nortvedt, G.A. (2017). Identifying competency demands in mathematical task: Recognising what matters. International Journal of Science and Mathematics Education 11, 1-17.
  50. Polya, G. (2005). 어떻게 문제를 풀 것인가? (우정호 역). 서울: 교우사. (원저 1945년 출판)
  51. Puig, L. (1993). Elementos para la instruccion en resolucion de problemas de matematicas. Tesis doctoral inedita, Universitat de Valnecia, Espana.
  52. Schoenfeld, A. H. (2013). Reflections on problem solving theory and practice, The Mathematics Enthusias 10(1), 9-33.
  53. Selden, A., Selden, J., Hauk, S. & Mason, A. (1999). Do calculus students eventually learn to solve non-routine problems (Report No. 1999-5). Cookeville: Tennessee Technological University, 1-20.
  54. Stein, M. K. & Smith, M. S. (1998). Mathematical tasks as a framework for reflection: From research to practice. Mathematics Teaching in the Middle School 3(4), 268-275.
  55. Zwick, W. R. & Velicer, W. F. (1986). Comparison of five rules for determining the number of components to retain. Psychological Bulletin 99, 432-442. https://doi.org/10.1037/0033-2909.99.3.432