DOI QR코드

DOI QR Code

Regional Assessment of Seismic Site Effects and Induced Vulnerable Area in Gyeonggi-do, South Korea, Using GIS

GIS 기반 경기도 광역영역의 부지지진응답 특성 및 연계 지진 취약지역 분석

  • Kim, Han-Saem (Earthquake Research Center, Korea Institute of Geoscience and Mineral Resources) ;
  • Sun, Chang-Guk (Geological Research Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Cho, Hyung-Ik (Earthquake Research Center, Korea Institute of Geoscience and Mineral Resources) ;
  • Nam, Jee-Hyun (Office of Urban Planning & Housing Policy Research, Gyeonggi Research Institute)
  • 김한샘 (한국지질자원연구원 지진연구센터) ;
  • 선창국 (한국지질자원연구원 국토지질연구본부) ;
  • 조형익 (한국지질자원연구원 지진연구센터) ;
  • 남지현 (경기연구원 공간도시연구실)
  • Received : 2018.01.23
  • Accepted : 2018.03.11
  • Published : 2018.05.31

Abstract

The necessity of predicting the spatial information of the site-specific seismic response, which is essential information for the comprehensive earthquake disaster countermeasures, is increasing for the mid-west urban areas where the earthquake-induced damages can be increased due to frequent occurrence of mid-scale earthquake such as 2016 Gyeongju Earthquake and 2017 Pohang Earthquake. Especially, researches on strategic securing of site survey datasets and understanding the site-specific site response characteristics were conducted for Gyeonggi-do, South Korea. In this study, a GIS-based framework for site-specific assessment of site response and induced vulnerable area in Gyeonggi-do, South Korea was proposed. Geo-Data based on GIS platform was constructed for regional estimation of geotechnical characteristics by collecting borehole and land coverage datasets. And the geo-spatial grid information was developed for deriving spatial distribution of geotechnical layer and site response parameters based on the optimization of the geostatistical interpolation method. Accordingly, base information for Improving earthquake preparedness measures was derived as seismic zonation map with administrative sub-units considering the quantitative site effect of Gyeonggi-do.

최근 경주지진과 포항지진과 같이 중규모 이상 지진이 빈번이 발생함에 따라 피해기능성이 커질 수 있는 중서부 도시 지역들에 대한 종합적 지진재해 대책 수립의 필수기본 정보인 지역적 부지고유 지진응답 공간정보 예측의 필요성이 증대되고 있다. 특히 경기도 지역을 대상으로 정량적 부지고유 지반응답 특성 파악의 필요성이 증대됨에 따라 대상 확장영역 내 전략적 지반조사 자료의 확보 및 연계적 부지특성 파악 연구가 다각도로 진행되고 있다. 이에 본 연구에서는 경기도 지진취약지역 도출 및 부지고유 지진응답특성 분석을 위한 위사결정 프레임웍을 제시하였다. 시추조사 자료 및 수치표고모델 등의 지표피복 자료를 수집함으로써 지반지진공학적 연계활용을 위한 GIS 플랫폼 기반의 Geo-Data를 구축하였다. 지구통계학적 공간보간 기법의 최적화 설계를 통해 지층분포 특성 및 연계 취약도 성분 도출을 위한 지반 공간그리드를 구축하였으며, 이를 통해 지진지반응답 매개변수의 공간구역화를 수행하였다. 이에 따라 경기도 지역의 정량적 부지효과를 고려한 경기도 맞춤형 지진방재대책 수립을 위한 기저 정보로서 활용하였다.

Keywords

References

  1. Kim, H.S., Kim, H.K, Shin, S.Y., and Chung, C.K. (2011), "Appli- cation of Statistical Geo-Spatial Information Technology to Soil Stratification", J. of the Korean Geotechnical Society, Vol.27, No.7, pp.59-68. https://doi.org/10.7843/kgs.2011.27.7.059
  2. Kim, H.S. and Sum, C.K. (2016), "Visible Assessment of Earthquake- induced Geotechnical Hazards by Adopting Integrated Geospatial Database in Coastal Facility Areas", Jorunal of the Earthquake Engineering Society of Korea, Vol.20, No.3, pp.171-180. https://doi.org/10.5000/EESK.2016.20.3.171
  3. Sun, C.K. and Kim, H.S. (2016), "Site Classification for Incheon According to Site-Specific Seismic Response Parameters by Esti- mating Geotechnical Spatial Information Based on GIS", J. of the Korea Association of Geographic Information Studies, Vol.19, No.4, pp.1-15.
  4. Borcherdt, R.D. (1994), "Estimates of Site Dependent Response Spectra for Design (Methodology and Justification)", Earthquake Spectra, Vol.10, pp.617-653. https://doi.org/10.1193/1.1585791
  5. Chun, S.H., Sun, C.K., and Chung, C.K. (2005), "Application of Geostatistical Method for Geo-Layer Information", Journal of Korean Society of Civil Engineering, Vol.25, No.2C, pp.103-115.
  6. Chung, C.K., Kim, H.S. and Sun, C.G. (2014), "Real-time Assess- ment Framework of Spatial Liquefaction Hazard in Port Areas Considering Site-specific Seismic Response", Computers and Geotechnics, Vol.61, pp.241-253. https://doi.org/10.1016/j.compgeo.2014.06.001
  7. Esri (2006), ArcGIS 9: Using ArcGIS Desktop, ESRI Press.
  8. FEMA (2003), HAZUS-MH Technical Manual, Federal Emergency Management Agency, Washington, D.C.
  9. Green, R.A., Olson, S.M., Cox, B.R., Rix, G.J., Rathje, E., Bachhuber, J., French, J., Lasley, S., and Martin, N. (2011), "Geotechnical Aspects of Failures at Port-au-Prince Seaport during the 12 January 2010 Haiti Earthquake", Earthquake Spectra, Vol.27, No.S1, pp.S43-S65. https://doi.org/10.1193/1.3636440
  10. Hoult, R.D., Lumantarna, E., and Goldsworthy, H.M. (2017), "Soil Amplification in Low-to-moderate Seismic Regions", Bulletin of Earthquake Engineering, Vol.15, No.5, pp.1945-1963. https://doi.org/10.1007/s10518-016-0067-5
  11. Issaks, E.H. and Srivastva, R.M. (1989), An Introductions to Applied Geostatistics (Oxford University Press, Oxford).
  12. Kim, D.S., Chung, C.K., Sun C.G., and Bang, E.S. (2002), "Site Assessment and Evaluation of Spatial Earthquake Ground Motion of Kyeongju", Soil Dynamics and Earthquake Engineering, Vol. 22, No.5, pp.371-387. https://doi.org/10.1016/S0267-7261(02)00023-4
  13. Kim, H.S. and Chung, C.K. (2016), "Integrated System for Site- specific Earthquake Hazard Assessment with Geotechnical Spatial Grid Information based on GIS", Natural Hazards, Vol.82, No.2, pp.981-1007. https://doi.org/10.1007/s11069-016-2230-3
  14. Kim, H.S., Chung, C.K., and Kim, H.K. (2016), "Geo-spatial Data Integration for Subsurface Stratification of Dam Site with Outlier Analyses", Environmental Earth Sciences, Vol.75, No.2, pp.168. https://doi.org/10.1007/s12665-015-4931-4
  15. Kim, H.S., Sun, C.G., and Cho, H.I. (2017), "Geospatial Big Data- Based Geostatistical Zonation of Seismic Site Effects in Seoul Metropolitan Area", ISPRS International Journal of Geo-Information, Vol.6, No.6, pp.174. https://doi.org/10.3390/ijgi6060174
  16. Kim, J.K. (2011), "Analysis of Characteristics of Seismic Source and Response Spectrum of Ground Motions from Recent Earthquake near the Backryoung Island", Geophysics and Geophysical Exploration, Vol.14, No.4, pp.274-281.
  17. Kassaras, I., Papadimitriou, P., Kapetanidis, V., and Voulgaris, N. (2017), "Seismic Site Characterization at the Western Cephalonia Island in the Aftermath of the 2014 Earthquake Series", International Journal of Geo-Engineering, Vol.8, No.7.
  18. Kramer, S.L. (1996), Geotechnical Earthquake Engineering, Prentice Hall: New Jersey.
  19. Lee, S.H., Sun, C.G., Yoon, J.K., and Kim, D.S. (2012), "Develop- ment and Verification of a New Site Classification System and Site Coefficients for Regions of Shallow Bedrock in Korea", Journal of Earthquake Engineering, Vol.16, No.6, pp.795-819. https://doi.org/10.1080/13632469.2012.658491
  20. McPherson, A. and Hall, L. (2013), "Site Classification for Earthquake Hazard and Risk Assessment in Australia", Bulletin of the Seismological Society of America, Vol.103, No.2A, 1085-1102. https://doi.org/10.1785/0120120142
  21. MOCT. (1997), Study of Seismic Design Guideline (II). Ministry of Construction and Transportation. pp.492
  22. NIBS. (1997), Earthquake Loss Estimation Technology HAZUS. Federal Emergency Management Agency, Washington D. C.
  23. Pitilakis, K., Riga, E., and Anastasiadis, A. (2013), "New Code Site Classification, Amplification Factors and Normalized Response Spectra based on a Worldwide Ground-motion Database", Bulletin of Earthquake Engineering, Vol.11, No.4, pp.925-966. https://doi.org/10.1007/s10518-013-9429-4
  24. Rodriguez-Marek, A., Bray, J.D., and Abrahamson, N.A. (2001), "An Empirical Geotechnical Seismic Site Response Procedure", Earthq. Spectra, Vol.17, No.1, pp.65-87. https://doi.org/10.1193/1.1586167
  25. Song, R., Li, Y., and Lindt, J.W. (2014), "Impact of Earthquake Ground Motion Characteristics on Collapse Risk of Post-mainshock Buildings Considering Aftershocks", Engineering Structures, Vol. 81, pp.349-361. https://doi.org/10.1016/j.engstruct.2014.09.047
  26. Sun, C.G. (2010), "Suggestion of Additional Criteria for Site Cate- gorization in Korea by Quantifying Regional Specific Characteristics on Seismic Response", Geophys. Geophys. Explor, Vol.13, No.3, pp. pp.203-218.
  27. Sun, C.G. (2012), "Applications of a GIS-based Geotechnical Tool to Assess Spatial Earthquake Hazards in an Urban Area", Environmental Earth Sciences, Vol.65, No.7, pp.1987-2001. https://doi.org/10.1007/s12665-011-1180-z
  28. Sun, C.G., Kim, D.S., and Chung, C.K. (2005), "Geologic Site Conditions and Site Coefficients for Estimating Earthquake Ground Motions in the Inland Areas of Korea", Engineering Geology, Vol.81, No.4, pp.446-469. https://doi.org/10.1016/j.enggeo.2005.08.002
  29. Sun, C.G., Chung, B.S., Kim, J.H., Hong, S.K., and Kim, K.S. (2010), "Implementation of an Earthquake Alarming System Based on Acceleration Monitoring at Coastal LNG Receiving Terminals", J. Korean Soc. Eng. Geology, Vol.20, No.3, pp.339-348.
  30. Sun, C.G., Kim, H.S., Chung, C.K., and Chi, H.C. (2014), "Spatial Zonations for Regional Assessment of Seismic Site Effects in the Seoul Metropolitan Area", Soil Dynamics and Earthquake Engineering, Vol.56, pp.44-56. https://doi.org/10.1016/j.soildyn.2013.10.003
  31. Sun, C.G. and Kim, H.S. (2017), "GIS-based Regional Assessment of Seismic Site Effects Considering the Spatial Uncertainty of Site-specific Geotechnical Characteristics in Coastal and Inland Urban Areas", Geomatics, Natural Hazards and Risk, Vol.8, No. 2, pp.1592-1621. https://doi.org/10.1080/19475705.2017.1364305
  32. Sun, C.G., Cho, H.I., Kim, H.S., and Kim, D.S. (2018), "Assessment of New Korean Site Classification and Design Response Spectra", Geotechnique Letters, pp.1-31.
  33. Wills, C.J., Petersen, M., Bryant, W.A., Reichle, M., Saucedo, G.J., Tan, S., Taylor, G., and Treiman, J. (2000), "A Site-conditions Map for California based on Geology and Shear-wave Velocity", Bulletin of the Seismological Society of America, Vol.90, No.6B, pp.187-208. https://doi.org/10.1785/0119990070
  34. You, K.H., Lee, S.H., Choo, S.Y., and Jue, K.S. (2004), "A Study on the Estimation of Rock Mass Classes using the Information off a Tunnel Center Line", Tunnelling Technology, Journal of the Korean Tunnelling Association, Vol.6, No.2, pp.101-111.

Cited by

  1. 공간 분석 기반 지진 위험도 정보를 활용한 우리나라 지진 취약 지역 평가 vol.52, pp.6, 2018, https://doi.org/10.9719/eeg.2019.52.6.573
  2. 기계학습을 이용한 지진 취약성 평가 및 매핑: 9.12 경주지진을 대상으로 vol.36, pp.6, 2020, https://doi.org/10.7780/kjrs.2020.36.6.1.7