References
- Arimoto, K., Fukuda, H., Imajoh-Ohmi, S., Saito, H., and Takekawa, M. (2008). Formation of stress granules inhibits apoptosis by suppressing stress-responsive MAPK pathways. Nat. Cell Biol. 10, 1324-1332. https://doi.org/10.1038/ncb1791
- Bruns, A.M., and Horvath, C.M. (2015). LGP2 synergy with MDA5 in RLR-mediated RNA recognition and antiviral signaling. Cytokine 74, 198-206. https://doi.org/10.1016/j.cyto.2015.02.010
- Buchan, J.R., Kolaitis, R.-M., Taylor, J.P., and Parker, R. (2013). Eukaryotic stress granules are cleared by autophagy and Cdc48/VCP function. Cell 153, 1461-1474. https://doi.org/10.1016/j.cell.2013.05.037
- Chernov, K.G., Barbet, A., Hamon, L., Ovchinnikov, L.P., Curmi, P.A., and Pastre, D. (2009). Role of microtubules in stress granule assembly: microtubule dynamical instability favors the formation of micrometric stress granules in cells. J. Biol. Chem. 284, 36569-36580. https://doi.org/10.1074/jbc.M109.042879
- Choi, B.Y., Sim, C.K., Cho, Y.S., Sohn, M., Kim, Y.-J., Lee, M.S., and Suh, S.W. (2016). 2′-5′ oligoadenylate synthetase-like 1 (OASL1) deficiency suppresses central nervous system damage in a murine MOG-induced multiple sclerosis model. Neurosci. Lett. 628, 78-84. https://doi.org/10.1016/j.neulet.2016.06.026
- Dhar, J., Cuevas, R.A., Goswami, R., Zhu, J., Sarkar, S.N., and Barik, S. (2015). 2′-5′-oligoadenylate synthetase-like protein inhibits respiratory syncytial virus replication and is targeted by the viral nonstructural protein 1. J. Virol. 89, 10115-10119. https://doi.org/10.1128/JVI.01076-15
- Dixit, E., Boulant, S., Zhang, Y., Lee, A.S.Y., Odendall, C., Shum, B., Hacohen, N., Chen, Z.J., Whelan, S.P., Fransen, M., et al. (2010). Peroxisomes are signaling platforms for antiviral innate immunity. Cell 141, 668-681. https://doi.org/10.1016/j.cell.2010.04.018
- Eskildsen, S., Hartmann, R., Kjeldgaard, N.O., and Justesen, J. (2002). Gene structure of the murine 2′-5′-oligoadenylate synthetase family. Cell. Mol. Life Sci. 59, 1212-1222. https://doi.org/10.1007/s00018-002-8499-2
- Kato, H., Takeuchi, O., Mikamo- Satoh, E., Hirai, R., Kawai, T., Matsushita, K., Hiiragi, A., Dermody, T.S., Fujita, T., and Akira, S. (2008). Length-dependent recognition of double-stranded ribonucleic acids by retinoic acid-inducible gene-I and melanoma differentiation-associated gene 5. J. Exp. Med. 205, 1601-1610. https://doi.org/10.1084/jem.20080091
- Kato, H., Takeuchi, O., Sato, S., Yoneyama, M., Yamamoto, M., Matsui, K., Uematsu, S., Jung, A., Kawai, T., Ishii, K.J., et al. (2006). Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441, 101-105. https://doi.org/10.1038/nature04734
- Kedersha, N.L., Gupta, M., Li, W., Miller, I., and Anderson, P. (1999). RNA-binding proteins TIA-1 and TIAR link the phosphorylation of eIF-2 alpha to the assembly of mammalian stress granules. J. Cell Biol. 147, 1431-1442. https://doi.org/10.1083/jcb.147.7.1431
- Kedersha, N., Chen, S., Gilks, N., Li, W., Miller, I.J., Stahl, J., and Anderson, P. (2002). Evidence that ternary complex (eIF2-GTPtRNA(i)(Met))-deficient preinitiation complexes are core constituents of mammalian stress granules. Mol. Biol. Cell 13, 195-210. https://doi.org/10.1091/mbc.01-05-0221
- Kedersha, N., Ivanov, P., and Anderson, P. (2013). Stress granules and cell signaling: more than just a passing phase? Trends Biochem. Sci. 38, 494-506. https://doi.org/10.1016/j.tibs.2013.07.004
- Kim, J., Lee, J., Lee, S., Lee, B., and Kim-Ha, J. (2014a). Phylogenetic comparison of oskar mRNA localization signals. Biochem. Biophys. Res. Commun. 444, 98-103. https://doi.org/10.1016/j.bbrc.2014.01.021
- Kim, Y.-M., Choi, W.Y., Oh, C.-M., Han, G.-H., and Kim, Y.-J. (2014b). Secondary structure of the Irf7 5'-UTR, analyzed using SHAPE (selective 2'-hydroxyl acylation analyzed by primer extension). BMB Rep. 47, 558-562. https://doi.org/10.5483/BMBRep.2014.47.10.281
- Langereis, M.A., Feng, Q., and van Kuppeveld, F.J. (2013). MDA5 localizes to stress granules, but this localization is not required for the induction of type I interferon. J. Virol. 87, 6314-6325. https://doi.org/10.1128/JVI.03213-12
- Lee, M.S., Kim, B., Oh, G.T., and Kim, Y.-J. (2013a). OASL1 inhibits translation of the type I interferon-regulating transcription factor IRF7. Nat. Immunol. 14, 346-355. https://doi.org/10.1038/ni.2535
-
Lee, M.S., Park, C.H., Jeong, Y.H., Kim, Y.-J., and Ha, S.-J. (2013b). Negative regulation of type I IFN expression by OASL1 permits chronic viral infection and
$CD8^+$ T-cell exhaustion. PLoS Pathog. 9, e1003478. https://doi.org/10.1371/journal.ppat.1003478 -
Lee, N.-R., Kim, H.-I., Choi, M.-S., Yi, C.-M., and Inn, K.-S. (2015). Regulation of MDA5-MAVS antiviral signaling axis by TRIM25 through TRAF6-mediated
$NF-{\kappa}B$ activation. Mol. Cells 38, 759-764. https://doi.org/10.14348/molcells.2015.0047 - Loschi, M., Leishman, C.C., Berardone, N., and Boccaccio, G.L. (2009). Dynein and kinesin regulate stress-granule and P-body dynamics. J. Cell. Sci. 122, 3973-3982. https://doi.org/10.1242/jcs.051383
- Narita, R., Takahasi, K., Murakami, E., Hirano, E., Yamamoto, S.P., Yoneyama, M., Kato, H., and Fujita, T. (2014). A novel function of human pumilio proteins in cytoplasmic sensing of viral infection. PLoS Pathog. 10, e1004417. https://doi.org/10.1371/journal.ppat.1004417
- Oh, J.E., Lee, M.S., Kim, Y.-J., and Lee, H.K. (2016a). OASL1 deficiency promotes antiviral protection against genital herpes simplex virus type 2 infection by enhancing type I interferon production. Sci. Rep. 6, 19089. https://doi.org/10.1038/srep19089
- Oh, S.-W., Onomoto, K., Wakimoto, M., Onoguchi, K., Ishidate, F., Fujiwara, T., Yoneyama, M., Kato, H., and Fujita, T. (2016b). Leadercontaining uncapped viral transcript activates RIG-I in antiviral stress granules. PLoS Pathog. 12, e1005444. https://doi.org/10.1371/journal.ppat.1005444
- Ohn, T., and Anderson, P. (2010). The role of posttranslational modifications in the assembly of stress granules. Wiley Interdiscip Rev. RNA 1, 486-493. https://doi.org/10.1002/wrna.23
- Onomoto, K., Jogi, M., Yoo, J.-S., Narita, R., Morimoto, S., Takemura, A., Sambhara, S., Kawaguchi, A., Osari, S., Nagata, K., et al. (2012). Critical role of an antiviral stress granule containing RIG-I and PKR in viral detection and innate immunity. PLoS ONE 7, e43031. https://doi.org/10.1371/journal.pone.0043031
-
Park, I.-H., Baek, K.-W., Cho, E.-Y., and Ahn, B.-Y. (2011). PKRdependent mechanisms of interferon-
${\alpha}$ for inhibiting hepatitis B virus replication. Mol. Cells 32, 167-172. https://doi.org/10.1007/s10059-011-1059-6 - Sim, C.K., Cho, Y.S., Kim, B.S., Baek, I.-J., Kim, Y.-J., and Lee, M.S. (2016). 2′-5′ Oligoadenylate synthetase-like 1 (OASL1) deficiency in mice promotes an effective anti-tumor immune response by enhancing the production of type I interferons. Cancer Immunol. Immunother. 1-13.
- Szymanski, M.R., Jezewska, M.J., Bujalowski, P.J., Bussetta, C., Ye, M., Choi, K.H., and Bujalowski, W. (2011). Full-length Dengue virus RNAdependent RNA polymerase-RNA/DNA complexes: stoichiometries, intrinsic affinities, cooperativities, base, and conformational specificities. J. Biol. Chem. 286, 33095-33108. https://doi.org/10.1074/jbc.M111.255034
- Triantafilou, K., Vakakis, E., Kar, S., Richer, E., Evans, G.L., and Triantafilou, M. (2012). Visualisation of direct interaction of MDA5 and the dsRNA replicative intermediate form of positive strand RNA viruses. J. Cell. Sci. 125, 4761-4769. https://doi.org/10.1242/jcs.103887
- Tsai, N.-P., and Wei, L.-N. (2010). RhoA/ROCK1 signaling regulates stress granule formation and apoptosis. Cell. Signal. 22, 668-675. https://doi.org/10.1016/j.cellsig.2009.12.001
- Wack, A., Terczynska-Dyla, E., and Hartmann, R. (2015). Guarding the frontiers: the biology of type III interferons. Nat. Immunol. 16, 802-809. https://doi.org/10.1038/ni.3212
- Yoneyama, M., Jogi, M., and Onomoto, K. (2016). Regulation of antiviral innate immune signaling by stress-induced RNA granules. J. Biochem. 159, 279-286.
- Yoneyama, M., Onomoto, K., Jogi, M., Akaboshi, T., and Fujita, T. (2015). Viral RNA detection by RIG-I-like receptors. Curr. Opin. Immunol. 32, 48-53. https://doi.org/10.1016/j.coi.2014.12.012
- Yoo, J.-S., Takahasi, K., Ng, C.S., Ouda, R., Onomoto, K., Yoneyama, M., Lai, J.C., Lattmann, S., Nagamine, Y., Matsui, T., et al. (2014). DHX36 enhances RIG-I signaling by facilitating PKR-mediated antiviral stress granule formation. PLoS Pathog. 10, e1004012. https://doi.org/10.1371/journal.ppat.1004012
- Zhang, P., Li, Y., Xia, J., He, J., Pu, J., Xie, J., Wu, S., Feng, L., Huang, X., and Zhang, P. (2014). IPS-1 plays an essential role in dsRNAinduced stress granule formation by interacting with PKR and promoting its activation. J. Cell. Sci. 127, 2471-2482. https://doi.org/10.1242/jcs.139626
- Zhu, J., Zhang, Y., Ghosh, A., Cuevas, R.A., Forero, A., Dhar, J., Ibsen, M.S., Schmid-Burgk, J.L., Schmidt, T., Ganapathiraju, M.K., et al. (2014). Antiviral activity of human OASL protein is mediated by enhancing signaling of the RIG-I RNA sensor. Immunity 40, 936-948. https://doi.org/10.1016/j.immuni.2014.05.007
Cited by
- IRF5 regulates unique subset of genes in dendritic cells during West Nile virus infection vol.105, pp.2, 2018, https://doi.org/10.1002/jlb.ma0318-136rrr
- Activation of innate immunity by mitochondrial dsRNA in mouse cells lacking p53 protein vol.25, pp.6, 2019, https://doi.org/10.1261/rna.069625.118
- Arming Filamentous Bacteriophage, a Nature-Made Nanoparticle, for New Vaccine and Immunotherapeutic Strategies vol.11, pp.9, 2019, https://doi.org/10.3390/pharmaceutics11090437
- Dance with the Devil: Stress Granules and Signaling in Antiviral Responses vol.12, pp.9, 2020, https://doi.org/10.3390/v12090984