DOI QR코드

DOI QR Code

Cigarette Smoke Extract Enhances IL-17A-Induced IL-8 Production via Up-Regulation of IL-17R in Human Bronchial Epithelial Cells

  • Lee, Kyoung-Hee (Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Hospital) ;
  • Lee, Chang-Hoon (Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Hospital) ;
  • Woo, Jisu (Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Hospital) ;
  • Jeong, Jiyeong (Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Hospital) ;
  • Jang, An-Hee (Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Hospital) ;
  • Yoo, Chul-Gyu (Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Hospital)
  • Received : 2017.07.12
  • Accepted : 2018.01.10
  • Published : 2018.04.30

Abstract

Interleukin-17A (IL-17A) is a pro-inflammatory cytokine mainly derived from T helper 17 cells and is known to be involved in the pathogenesis of chronic obstructive pulmonary disease (COPD). Cigarette smoke (CS) has been considered as a primary risk factor of COPD. However, the interaction between CS and IL-17A and the underlying molecular mechanisms have not been clarified. In the current study, we investigated the effects of cigarette smoke extract (CSE) on IL-17A-induced IL-8 production in human bronchial epithelial cells, and sought to identify the underlying molecular mechanisms. IL-8 production was significantly enhanced following treatment with both IL-17A and CSE, while treatment with either IL-17A or CSE alone caused only a slight increase in IL-8 production. CSE increased the transcription of IL-17RA/RC and surface membrane expression of IL-17R, which was suppressed by an inhibitor of the phosphoinositide 3-kinase (PI3K)/Akt pathway (LY294002). CSE caused inactivation of glycogen synthase $kinase-3{\beta}$ ($GSK-3{\beta}$) via the PI3K/Akt pathway. Blockade of $GSK-3{\beta}$ inactivation by overexpression of constitutively active $GSK-3{\beta}$ (S9A) completely suppressed the CSE-induced up-regulation of IL-17R expression and the CSE-induced enhancement of IL-8 secretion. In conclusion, inactivation of $GSK-3{\beta}$ via the PI3K/Akt pathway mediates CSE-induced up-regulation of IL-17R, which contributes to the enhancement of IL-17A-induced IL-8 production.

Keywords

References

  1. Aggarwal, S., and Gurney, A.L. (2002). IL-17: prototype member of an emerging cytokine family. J. Leukoc. Biol. 71, 1-8.
  2. Bettelli, E., Korn, T., and Kuchroo, V.K. (2007). Th17: the third member of the effector T cell trilogy. Curr. Opin. Immunol. 19, 652-657. https://doi.org/10.1016/j.coi.2007.07.020
  3. Boyle, W.J., Smeal, T., Defize, L.H., Angel, P., Woodgett, J.R., Karin, M., and Hunter, T. (1991). Activation of protein kinase C decreases phosphorylation of c-Jun at sites that negatively regulate its DNAbinding activity. Cell 64, 573-584. https://doi.org/10.1016/0092-8674(91)90241-P
  4. Burgler, S., Ouaked, N., Bassin, C., Basinski, T.M., Mantel, P.Y., Siegmund, K., Meyer, N., Akdis, C.A., and Schmidt-Weber, C.B. (2009). Differentiation and functional analysis of human T(H)17 cells. J. Allergy Clin. Immunol. 123, 588-595, 595 e581-587. https://doi.org/10.1016/j.jaci.2008.12.017
  5. Cazzola, M., and Matera, M.G. (2012). IL-17 in chronic obstructive pulmonary disease. Expert. Rev. Respir. Med. 6, 135-138. https://doi.org/10.1586/ers.12.7
  6. Chen, K., Pociask, D.A., McAleer, J.P., Chan, Y.R., Alcorn, J.F., Kreindler, J.L., Keyser, M.R., Shapiro, S.D., Houghton, A.M., Kolls, J.K., et al. (2011). IL-17RA is required for CCL2 expression, macrophage recruitment, and emphysema in response to cigarette smoke. PLoS One 6, e20333. https://doi.org/10.1371/journal.pone.0020333
  7. Chu, B., Zhong, R., Soncin, F., Stevenson, M.A., and Calderwood, S.K. (1998). Transcriptional activity of heat shock factor 1 at 37 degrees C is repressed through phosphorylation on two distinct serine residues by glycogen synthase kinase 3 and protein kinases Calpha and Czeta. J. Biol. Chem. 273, 18640-18646. https://doi.org/10.1074/jbc.273.29.18640
  8. Cortes-Vieyra, R., Bravo-Patino, A., Valdez-Alarcon, J.J., Juarez, M.C., Finlay, B.B., and Baizabal-Aguirre, V.M. (2012). Role of glycogen synthase kinase-3 beta in the inflammatory response caused by bacterial pathogens. J. Inflamm. (Lond) 9, 23. https://doi.org/10.1186/1476-9255-9-23
  9. Di Stefano, A., Caramori, G., Gnemmi, I., Contoli, M., Vicari, C., Capelli, A., Magno, F., D'Anna, S.E., Zanini, A., Brun, P., et al. (2009). T helper type 17-related cytokine expression is increased in the bronchial mucosa of stable chronic obstructive pulmonary disease patients. Clin. Exp. Immunol. 157, 316-324. https://doi.org/10.1111/j.1365-2249.2009.03965.x
  10. Doble, B.W., and Woodgett, J.R. (2003). GSK-3: tricks of the trade for a multi-tasking kinase. J. Cell. Sci. 116, 1175-1186. https://doi.org/10.1242/jcs.00384
  11. Doe, C., Bafadhel, M., Siddiqui, S., Desai, D., Mistry, V., Rugman, P., McCormick, M., Woods, J., May, R., Sleeman, M.A., et al. (2010). Expression of the T helper 17-associated cytokines IL-17A and IL-17F in asthma and COPD. Chest 138, 1140-1147. https://doi.org/10.1378/chest.09-3058
  12. Fischer, B.M., Pavlisko, E., and Voynow, J.A. (2011). Pathogenic triad in COPD: oxidative stress, protease-antiprotease imbalance, and inflammation. Int. J. Chron. Obstruct. Pulmon. Dis. 6, 413-421.
  13. Fossiez, F., Djossou, O., Chomarat, P., Flores-Romo, L., Ait-Yahia, S., Maat, C., Pin, J.J., Garrone, P., Garcia, E., Saeland, S., et al. (1996). T cell interleukin-17 induces stromal cells to produce proinflammatory and hematopoietic cytokines. J. Exp. Med. 183, 2593-2603. https://doi.org/10.1084/jem.183.6.2593
  14. Ginger, R.S., Dalton, E.C., Ryves, W.J., Fukuzawa, M., Williams, J.G., and Harwood, A.J. (2000). Glycogen synthase kinase-3 enhances nuclear export of a Dictyostelium STAT protein. EMBO J. 19, 5483-5491. https://doi.org/10.1093/emboj/19.20.5483
  15. GOLD (2016). Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease.
  16. Gregory, M.A., Qi, Y., and Hann, S.R. (2003). Phosphorylation by glycogen synthase kinase-3 controls c-myc proteolysis and subnuclear localization. J. Biol. Chem. 278, 51606-51612. https://doi.org/10.1074/jbc.M310722200
  17. Gupta, V., Khan, A., Higham, A., Lemon, J., Sriskantharajah, S., Amour, A., Hessel, E.M., Southworth, T., and Singh, D. (2016). The effect of phosphatidylinositol-3 kinase inhibition on matrix metalloproteinase-9 and reactive oxygen species release from chronic obstructive pulmonary disease neutrophils. Int. Immunopharmacol. 35, 155-162. https://doi.org/10.1016/j.intimp.2016.03.027
  18. Harrington, L.E., Hatton, R.D., Mangan, P.R., Turner, H., Murphy, T.L., Murphy, K.M., and Weaver, C.T. (2005). Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat. Immunol. 6, 1123-1132. https://doi.org/10.1038/ni1254
  19. Hoeflich, K.P., Luo, J., Rubie, E.A., Tsao, M.S., Jin, O., and Woodgett, J.R. (2000). Requirement for glycogen synthase kinase-3beta in cell survival and NF-kappaB activation. Nature 406, 86-90. https://doi.org/10.1038/35017574
  20. Hogg, J.C., Chu, F., Utokaparch, S., Woods, R., Elliott, W.M., Buzatu, L., Cherniack, R.M., Rogers, R.M., Sciurba, F.C., Coxson, H.O., et al. (2004). The nature of small-airway obstruction in chronic obstructive pulmonary disease. N. Engl. J. Med. 350, 2645-2653. https://doi.org/10.1056/NEJMoa032158
  21. Hot, A., and Miossec, P. (2011). Effects of interleukin (IL)-17A and IL-17F in human rheumatoid arthritis synoviocytes. Ann. Rheum. Dis. 70, 727-732. https://doi.org/10.1136/ard.2010.143768
  22. Jope, R.S., and Johnson, G.V. (2004). The glamour and gloom of glycogen synthase kinase-3. Trends Biochem. Sci. 29, 95-102. https://doi.org/10.1016/j.tibs.2003.12.004
  23. Kim, J.W., Lee, J.E., Kim, M.J., Cho, E.G., Cho, S.G., and Choi, E.J. (2003). Glycogen synthase kinase 3 beta is a natural activator of mitogen-activated protein kinase/extracellular signal-regulated kinase kinase kinase 1 (MEKK1). J. Biol. Chem. 278, 13995-14001. https://doi.org/10.1074/jbc.M300253200
  24. Kim, S.E., Thanh Thuy, T.T., Lee, J.H., Ro, J.Y., Bae, Y.A., Kong, Y., Ahn, J.Y., Lee, D.S., Oh, Y.M., Lee, S.D., et al. (2009). Simvastatin inhibits induction of matrix metalloproteinase-9 in rat alveolar macrophages exposed to cigarette smoke extract. Exp. Mol. Med. 41, 277-287. https://doi.org/10.3858/emm.2009.41.4.031
  25. Kirkham, P.A., and Barnes, P.J. (2013). Oxidative stress in COPD. Chest 144, 266-273. https://doi.org/10.1378/chest.12-2664
  26. Kolls, J.K., and Linden, A. (2004). Interleukin-17 family members and inflammation. Immunity 21, 467-476. https://doi.org/10.1016/j.immuni.2004.08.018
  27. Kunkel, S.L., Standiford, T., Kasahara, K., and Strieter, R.M. (1991). Interleukin-8 (IL-8): the major neutrophil chemotactic factor in the lung. Exp. Lung Res. 17, 17-23. https://doi.org/10.3109/01902149109063278
  28. Lee, K.H., Lee, C.H., Jeong, J., Jang, A.H., and Yoo, C.G. (2015). Neutrophil elastase differentially regulates interleukin 8 (IL-8) and vascular endothelial growth factor (VEGF) production by cigarette smoke extract. J. Biol. Chem. 290, 28438-28445. https://doi.org/10.1074/jbc.M115.663567
  29. Lee, C.H., Lee, K.H., Jang, A.H., and Yoo, C.G. (2017). The Impact of Autophagy on the Cigarette Smoke Extract-Induced Apoptosis of Bronchial Epithelial Cells. Tuberc. Respir. Dis. (Seoul) 80, 83-89. https://doi.org/10.4046/trd.2017.80.1.83
  30. Mahajan, K., and Mahajan, N.P. (2012). PI3K-independent AKT activation in cancers: a treasure trove for novel therapeutics. J. Cell. Physiol. 227, 3178-3184. https://doi.org/10.1002/jcp.24065
  31. Mak, J.C., Chan-Yeung, M.M., Ho, S.P., Chan, K.S., Choo, K., Yee, K.S., Chau, C.H., Cheung, A.H., Ip, M.S., and Members of Hong Kong Thoracic Society, COPD Study Group. (2009). Elevated plasma TGF-beta1 levels in patients with chronic obstructive pulmonary disease. Respir. Med. 103, 1083-1089. https://doi.org/10.1016/j.rmed.2009.01.005
  32. Mangan, P.R., Harrington, L.E., O'Quinn, D.B., Helms, W.S., Bullard, D.C., Elson, C.O., Hatton, R.D., Wahl, S.M., Schoeb, T.R., and Weaver, C.T. (2006). Transforming growth factor-beta induces development of the T(H)17 lineage. Nature 441, 231-234. https://doi.org/10.1038/nature04754
  33. Mannino, D.M., and Buist, A.S. (2007). Global burden of COPD: risk factors, prevalence, and future trends. Lancet 370, 765-773. https://doi.org/10.1016/S0140-6736(07)61380-4
  34. Miossec, P., and Kolls, J.K. (2012). Targeting IL-17 and TH17 cells in chronic inflammation. Nat. Rev. Drug Discov. 11, 763-776. https://doi.org/10.1038/nrd3794
  35. Onishi, R.M., and Gaffen, S.L. (2010). Interleukin-17 and its target genes: mechanisms of interleukin-17 function in disease. Immunology 129, 311-321. https://doi.org/10.1111/j.1365-2567.2009.03240.x
  36. Perera, W.R., Hurst, J.R., Wilkinson, T.M., Sapsford, R.J., Mullerova, H., Donaldson, G.C., and Wedzicha, J.A. (2007). Inflammatory changes, recovery and recurrence at COPD exacerbation. Eur. Respir. J. 29, 527-534. https://doi.org/10.1183/09031936.00092506
  37. Rahman, I., and Adcock, I.M. (2006). Oxidative stress and redox regulation of lung inflammation in COPD. Eur. Respir. J. 28, 219-242. https://doi.org/10.1183/09031936.06.00053805
  38. Rubinfeld, B., Albert, I., Porfiri, E., Fiol, C., Munemitsu, S., and Polakis, P. (1996). Binding of GSK3beta to the APC-beta-catenin complex and regulation of complex assembly. Science 272, 1023-1026. https://doi.org/10.1126/science.272.5264.1023
  39. Shan, M., Yuan, X., Song, L.Z., Roberts, L., Zarinkamar, N., Seryshev, A., Zhang, Y., Hilsenbeck, S., Chang, S.H., Dong, C., et al. (2012). Cigarette smoke induction of osteopontin (SPP1) mediates T(H)17 inflammation in human and experimental emphysema. Sci. Transl. Med. 4, 117ra119.
  40. Stambolic, V., and Woodgett, J.R. (1994). Mitogen inactivation of glycogen synthase kinase-3 beta in intact cells via serine 9 phosphorylation. Biochem. J. 303 (Pt 3), 701-704. https://doi.org/10.1042/bj3030701
  41. Thomas, G.M., Frame, S., Goedert, M., Nathke, I., Polakis, P., and Cohen, P. (1999). A GSK3-binding peptide from FRAT1 selectively inhibits the GSK3-catalysed phosphorylation of axin and beta-catenin. FEBS Lett. 458, 247-251. https://doi.org/10.1016/S0014-5793(99)01161-8
  42. Ungurs, M.J., Sinden, N.J., and Stockley, R.A. (2014). Progranulin is a substrate for neutrophil-elastase and proteinase-3 in the airway and its concentration correlates with mediators of airway inflammation in COPD. Am. J. Physiol. Lung Cell. Mol. Physiol. 306, L80-87.
  43. Vargas-Rojas, M.I., Ramirez-Venegas, A., Limon-Camacho, L., Ochoa, L., Hernandez-Zenteno, R., and Sansores, R.H. (2011). Increase of Th17 cells in peripheral blood of patients with chronic obstructive pulmonary disease. Respir. Med. 105, 1648-1654. https://doi.org/10.1016/j.rmed.2011.05.017
  44. Wang, Q., Zhou, Y., Wang, X., and Evers, B.M. (2006). Glycogen synthase kinase-3 is a negative regulator of extracellular signalregulated kinase. Oncogene 25, 43-50. https://doi.org/10.1038/sj.onc.1209004
  45. Yamamoto, C., Yoneda, T., Yoshikawa, M., Fu, A., okuyama, T., Tsukaguchi, K., and Narita, N. (1997). Airway inflammation in COPD assessed by sputum levels of interleukin-8. Chest 112, 505-510. https://doi.org/10.1378/chest.112.2.505
  46. Yao, Z., Painter, S.L., Fanslow, W.C., Ulrich, D., Macduff, B.M., Spriggs, M.K., and Armitage, R.J. (1995). Human IL-17: a novel cytokine derived from T cells. J. Immunol. 155, 5483-5486.
  47. Zrioual, S., Ecochard, R., Tournadre, A., Lenief, V., Cazalis, M.A., and Miossec, P. (2009). Genome-wide comparison between IL-17A- and IL-17F-induced effects in human rheumatoid arthritis synoviocytes. J. Immunol. 182, 3112-3120. https://doi.org/10.4049/jimmunol.0801967

Cited by

  1. Microbial Colonization at Early Life Promotes the Development of Diet-Induced CD8αβ Intraepithelial T Cells vol.42, pp.4, 2018, https://doi.org/10.14348/molcells.2019.2431
  2. Cellular and Molecular Links between Autoimmunity and Lipid Metabolism vol.42, pp.11, 2019, https://doi.org/10.14348/molcells.2019.0196
  3. Cigarette smoke extract decreased basal and lipopolysaccharide‐induced expression of MARCO via degradation of p300 vol.26, pp.1, 2018, https://doi.org/10.1111/resp.13867
  4. SnapshotDx Quiz: May 2021 vol.141, pp.5, 2018, https://doi.org/10.1016/j.jid.2021.03.006