DOI QR코드

DOI QR Code

Molecular Mechanisms of Synaptic Specificity: Spotlight on Hippocampal and Cerebellar Synapse Organizers

  • Park, Dongseok (Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST)) ;
  • Bae, Sungwon (Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST)) ;
  • Yoon, Taek Han (Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST)) ;
  • Ko, Jaewon (Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST))
  • Received : 2018.02.25
  • Accepted : 2018.04.02
  • Published : 2018.05.31

Abstract

Synapses and neural circuits form with exquisite specificity during brain development to allow the precise and appropriate flow of neural information. Although this property of synapses and neural circuits has been extensively investigated for more than a century, molecular mechanisms underlying this property are only recently being unveiled. Recent studies highlight several classes of cell-surface proteins as organizing hubs in building structural and functional architectures of specific synapses and neural circuits. In the present minireview, we discuss recent findings on various synapse organizers that confer the distinct properties of specific synapse types and neural circuit architectures in mammalian brains, with a particular focus on the hippocampus and cerebellum.

Keywords

References

  1. Allen, N.J., and Eroglu, C. (2017). Cell biology of astrocyte-synapse interactions. Neuron 96, 697-708. https://doi.org/10.1016/j.neuron.2017.09.056
  2. Anderson, G.R., Aoto, J., Tabuchi, K., Foldy, C., Covy, J., Yee, A.X., Wu, D., Lee, S.J., Chen, L., Malenka, R.C., et al. (2015). betaneurexins control neural circuits by regulating synaptic endocannabinoid signaling. Cell 162, 593-606. https://doi.org/10.1016/j.cell.2015.06.056
  3. Anderson, G.R., Maxeiner, S., Sando, R., Tsetsenis, T., Malenka, R.C., and Sudhof, T.C. (2017). Postsynaptic adhesion GPCR latrophilin-2 mediates target recognition in entorhinal-hippocampal synapse assembly. J. Cell Biol. 216, 3831-3846. https://doi.org/10.1083/jcb.201703042
  4. Aoto, J., Martinelli, D.C., Malenka, R.C., Tabuchi, K., and Sudhof, T.C. (2013). Presynaptic neurexin-3 alternative splicing trans-synaptically controls postsynaptic AMPA receptor trafficking. Cell 154, 75-88. https://doi.org/10.1016/j.cell.2013.05.060
  5. Aoto, J., Foldy, C., Ilcus, S.M., Tabuchi, K., and Sudhof, T.C. (2015). Distinct circuit-dependent functions of presynaptic neurexin-3 at GABAergic and glutamatergic synapses. Nat. Neurosci. 18, 997-1007. https://doi.org/10.1038/nn.4037
  6. Basu, J., Zaremba, J.D., Cheung, S.K., Hitti, F.L., Zemelman, B.V., Losonczy, A., and Siegelbaum, S.A. (2016). Gating of hippocampal activity, plasticity, and memory by entorhinal cortex long-range inhibition. Science 351, aaa5694. https://doi.org/10.1126/science.aaa5694
  7. Basu, R., Duan, X., Taylor, M.R., Martin, E.A., Muralidhar, S., Wang, Y., Gangi-Wellman, L., Das, S.C., Yamagata, M., West, P.J., et al. (2017). Heterophilic type II cadherins are required for highmagnitude synaptic potentiation in the hippocampus. Neuron 96, 160-176 e168. https://doi.org/10.1016/j.neuron.2017.09.009
  8. Bemben, M.A., Shipman, S.L., Nicoll, R.A., and Roche, K.W. (2015). The cellular and molecular landscape of neuroligins. Trends Neurosci. 38, 496-505. https://doi.org/10.1016/j.tins.2015.06.004
  9. Bolliger, M.F., Martinelli, D.C., and Sudhof, T.C. (2011). The celladhesion G protein-coupled receptor BAI3 is a high-affinity receptor for C1q-like proteins. Proc. Natl. Acad. Sci. USA 108, 2534-2539. https://doi.org/10.1073/pnas.1019577108
  10. Boucard, A.A., Ko, J., and Sudhof, T.C. (2012). High affinity neurexin binding to cell adhesion G-protein-coupled receptor CIRL1/latrophilin-1 produces an intercellular adhesion complex. J. Biol. Chem. 287, 9399-9413. https://doi.org/10.1074/jbc.M111.318659
  11. Cerminara, N.L., Lang, E.J., Sillitoe, R.V., and Apps, R. (2015). Redefining the cerebellar cortex as an assembly of non-uniform Purkinje cell microcircuits. Nat. Rev. Neurosci. 16, 79-93. https://doi.org/10.1038/nrn3886
  12. Chen, L.Y., Jiang, M., Zhang, B., Gokce, O., and Sudhof, T.C. (2017). Conditional deletion of all neurexins defines diversity of essential synaptic organizer functions for neurexins. Neuron 94, 611-625 e614. https://doi.org/10.1016/j.neuron.2017.04.011
  13. Choi, S.Y., Han, K., Cutforth, T., Chung, W., Park, H., Lee, D., Kim, R., Kim, M.H., Choi, Y., Shen, K., et al. (2015). Mice lacking the synaptic adhesion molecule Neph2/Kirrel3 display moderate hyperactivity and defective novel object preference. Front Cell Neurosci. 9, 283.
  14. Choii, G., and Ko, J. (2015). Gephyrin: a central GABAergic synapse organizer. Exp. Mol. Med. 47, e158. https://doi.org/10.1038/emm.2015.5
  15. Choo, M., Miyazaki, T., Yamazaki, M., Kawamura, M., Nakazawa, T., Zhang, J., Tanimura, A., Uesaka, N., Watanabe, M., Sakimura, K., et al. (2017). Retrograde BDNF to TrkB signaling promotes synapse elimination in the developing cerebellum. Nat. Commun. 8, 195. https://doi.org/10.1038/s41467-017-00260-w
  16. de Wit, J., and Ghosh, A. (2014). Control of neural circuit formation by leucine-rich repeat proteins. Trends Neurosci. 37, 539-550. https://doi.org/10.1016/j.tins.2014.07.004
  17. de Wit, J., and Ghosh, A. (2016). Specification of synaptic connectivity by cell surface interactions. Nat. Rev. Neurosci. 17, 22-35. https://doi.org/10.1038/nrn.2015.1
  18. DeNardo, L.A., de Wit, J., Otto-Hitt, S., and Ghosh, A. (2012). NGL-2 regulates input-specific synapse development in CA1 pyramidal neurons. Neuron 76, 762-775. https://doi.org/10.1016/j.neuron.2012.10.013
  19. Dolan, J., and Mitchell, K.J. (2013). Mutation of Elfn1 in mice causes seizures and hyperactivity. PLoS One 8, e80491. https://doi.org/10.1371/journal.pone.0080491
  20. Eichenbaum, H., Yonelinas, A.P., and Ranganath, C. (2007). The medial temporal lobe and recognition memory. Annu. Rev. Neurosci. 30, 123-152. https://doi.org/10.1146/annurev.neuro.30.051606.094328
  21. Emi, K., Kakegawa, W., Miura, E., Ito-Ishida, A., Kohda, K., and Yuzaki, M. (2013). Reevaluation of the role of parallel fiber synapses in delay eyeblink conditioning in mice using Cbln1 as a tool. Front. Neural Circuits 7, 180.
  22. Foldy, C., Malenka, R.C., and Sudhof, T.C. (2013). Autism-associated neuroligin-3 mutations commonly disrupt tonic endocannabinoid signaling. Neuron 78, 498-509. https://doi.org/10.1016/j.neuron.2013.02.036
  23. Foldy, C., Darmanis, S., Aoto, J., Malenka, R.C., Quake, S.R., and Sudhof, T.C. (2016). Single-cell RNAseq reveals cell adhesion molecule profiles in electrophysiologically defined neurons. Proc. Natl. Acad. Sci. USA 113, E5222-5231. https://doi.org/10.1073/pnas.1610155113
  24. Futai, K., Doty, C.D., Baek, B., Ryu, J., and Sheng, M. (2013). Specific trans-synaptic interaction with inhibitory interneuronal neurexin underlies differential ability of neuroligins to induce functional inhibitory synapses. J. Neurosci. 33, 3612-3623. https://doi.org/10.1523/JNEUROSCI.1811-12.2013
  25. Gandal, M.J., Leppa, V., Won, H., Parikshak, N.N., and Geschwind, D.H. (2016). The road to precision psychiatry: translating genetics into disease mechanisms. Nat. Neurosci. 19, 1397-1407. https://doi.org/10.1038/nn.4409
  26. Gibson, J.R., Huber, K.M., and Sudhof, T.C. (2009). Neuroligin-2 deletion selectively decreases inhibitory synaptic transmission originating from fast-spiking but not from somatostatin-positive interneurons. J. Neurosci. 29, 13883-13897. https://doi.org/10.1523/JNEUROSCI.2457-09.2009
  27. Huganir, R.L., and Nicoll, R.A. (2013). AMPARs and synaptic plasticity: the last 25 years. Neuron 80, 704-717. https://doi.org/10.1016/j.neuron.2013.10.025
  28. Hull, C., and Regehr, W.G. (2012). Identification of an inhibitory circuit that regulates cerebellar Golgi cell activity. Neuron 73, 149-158. https://doi.org/10.1016/j.neuron.2011.10.030
  29. Iijima, T., Miura, E., Watanabe, M., and Yuzaki, M. (2010). Distinct expression of C1q-like family mRNAs in mouse brain and biochemical characterization of their encoded proteins. Eur. J. Neurosci. 31, 1606-1615.
  30. Ito-Ishida, A., Miyazaki, T., Miura, E., Matsuda, K., Watanabe, M., Yuzaki, M., and Okabe, S. (2012). Presynaptically released Cbln1 induces dynamic axonal structural changes by interacting with GluD2 during cerebellar synapse formation. Neuron 76, 549-564. https://doi.org/10.1016/j.neuron.2012.07.027
  31. Ito-Ishida, A., Okabe, S., and Yuzaki, M. (2014). The role of Cbln1 on Purkinje cell synapse formation. Neurosci. Res. 83, 64-68. https://doi.org/10.1016/j.neures.2014.01.009
  32. Kakegawa, W., Mitakidis, N., Miura, E., Abe, M., Matsuda, K., Takeo, Y.H., Kohda, K., Motohashi, J., Takahashi, A., Nagao, S., et al. (2015). Anterograde C1ql1 signaling is required in order to determine and maintain a single-winner climbing fiber in the mouse cerebellum. Neuron 85, 316-329. https://doi.org/10.1016/j.neuron.2014.12.020
  33. Kakizawa, S., Yamasaki, M., Watanabe, M., and Kano, M. (2000). Critical period for activity-dependent synapse elimination in developing cerebellum. J Neurosci 20, 4954-4961. https://doi.org/10.1523/JNEUROSCI.20-13-04954.2000
  34. Kano, M., and Hashimoto, K. (2009). Synapse elimination in the central nervous system. Curr. Opin. Neurobiol. 19, 154-161. https://doi.org/10.1016/j.conb.2009.05.002
  35. Katzman, A., and Alberini, C.M. (2017). NLGN1 and NLGN2 in the prefrontal cortex: their role in memory consolidation and strengthening. Curr. Opin. Neurobiol. 48, 122-130.
  36. Kim, E., and Sheng, M. (2004). PDZ domain proteins of synapses. Nat. Rev. Neurosci. 5, 771-781. https://doi.org/10.1038/nrn1517
  37. Kim, J.A., Kim, D., Won, S.Y., Han, K.A., Park, D., Cho, E., Yun, N., An, H.J., Um, J.W., Kim, E., et al. (2017). Structural insights into modulation of neurexin-neuroligin trans-synaptic adhesion by MDGA1/neuroligin-2 complex. Neuron 94, 1121-1131 e1126. https://doi.org/10.1016/j.neuron.2017.05.034
  38. Kitamura, T., Macdonald, C.J., and Tonegawa, S. (2015a). Entorhinal-hippocampal neuronal circuits bridge temporally discontiguous events. Learn Mem. 22, 438-443. https://doi.org/10.1101/lm.038687.115
  39. Kitamura, T., Sun, C., Martin, J., Kitch, L.J., Schnitzer, M.J., and Tonegawa, S. (2015b). Entorhinal cortical ocean cells encode specific contexts and drive context-specific fear memory. Neuron 87, 1317-1331. https://doi.org/10.1016/j.neuron.2015.08.036
  40. Ko, J. (2012). The leucine-rich repeat superfamily of synaptic adhesion molecules: LRRTMs and Slitrks. Mol. Cells 34, 335-340. https://doi.org/10.1007/s10059-012-0113-3
  41. Konno, K., Matsuda, K., Nakamoto, C., Uchigashima, M., Miyazaki, T., Yamasaki, M., Sakimura, K., Yuzaki, M., and Watanabe, M. (2014). Enriched expression of GluD1 in higher brain regions and its involvement in parallel fiber-interneuron synapse formation in the cerebellum. J. Neurosci. 34, 7412-7424. https://doi.org/10.1523/JNEUROSCI.0628-14.2014
  42. Li, Y., Xu, J., Liu, Y., Zhu, J., Liu, N., Zeng, W., Huang, N., Rasch, M.J., Jiang, H., Gu, X., et al. (2017). A distinct entorhinal cortex to hippocampal CA1 direct circuit for olfactory associative learning. Nat. Neurosci. 20, 559-570. https://doi.org/10.1038/nn.4517
  43. Lu, Y.C., Nazarko, O.V., Sando, R., 3rd, Salzman, G.S., Sudhof, T.C., and Arac, D. (2015). Structural Basis of Latrophilin-FLRT-UNC5 Interaction in Cell Adhesion. Structure 23, 1678-1691. https://doi.org/10.1016/j.str.2015.06.024
  44. Mapelli, L., Pagani, M., Garrido, J.A., and D'Angelo, E. (2015). Integrated plasticity at inhibitory and excitatory synapses in the cerebellar circuit. Front Cell Neurosci. 9, 169.
  45. Martin, E.A., Muralidhar, S., Wang, Z., Cervantes, D.C., Basu, R., Taylor, M.R., Hunter, J., Cutforth, T., Wilke, S.A., Ghosh, A., et al. (2015). The intellectual disability gene Kirrel3 regulates target-specific mossy fiber synapse development in the hippocampus. Elife 4, e09395.
  46. Martin, E.A., Woodruff, D., Rawson, R.L., and Williams, M.E. (2017). Examining hippocampal mossy fiber synapses by 3D electron microscopy in wildtype and Kirrel3 knockout mice. eNeuro 4.
  47. Martinelli, D.C., Chew, K.S., Rohlmann, A., Lum, M.Y., Ressl, S., Hattar, S., Brunger, A.T., Missler, M., and Sudhof, T.C. (2016). Expression of C1ql3 in discrete neuronal populations controls efferent synapse numbers and diverse behaviors. Neuron 91, 1034-1051. https://doi.org/10.1016/j.neuron.2016.07.002
  48. Matsuda, K., and Yuzaki, M. (2011). Cbln family proteins promote synapse formation by regulating distinct neurexin signaling pathways in various brain regions. Eur. J. Neurosci. 33, 1447-1461. https://doi.org/10.1111/j.1460-9568.2011.07638.x
  49. Matsukawa, H., Wolf, A.M., Matsushita, S., Joho, R.H., and Knopfel, T. (2003). Motor dysfunction and altered synaptic transmission at the parallel fiber-Purkinje cell synapse in mice lacking potassium channels Kv3.1 and Kv3.3. J. Neurosci. 23, 7677-7684. https://doi.org/10.1523/JNEUROSCI.23-20-07677.2003
  50. McBain, C.J., and Fisahn, A. (2001). Interneurons unbound. Nat. Rev. Neurosci. 2, 11-23.
  51. Megias, M., Emri, Z., Freund, T.F., and Gulyas, A.I. (2001). Total number and distribution of inhibitory and excitatory synapses on hippocampal CA1 pyramidal cells. Neuroscience 102, 527-540. https://doi.org/10.1016/S0306-4522(00)00496-6
  52. Mishina, M., Uemura, T., Yasumura, M., and Yoshida, T. (2012). Molecular mechanism of parallel fiber-Purkinje cell synapse formation. Front Neural Circuits 6, 90.
  53. Miterko, L.N., and Sillitoe, R.V. (2017). Climbing Fiber Development Is Impaired in Postnatal Car8 (wdl). Mice. Cerebellum.
  54. Miura, E., Iijima, T., Yuzaki, M., and Watanabe, M. (2006). Distinct expression of Cbln family mRNAs in developing and adult mouse brains. Eur. J. Neurosci. 24, 750-760. https://doi.org/10.1111/j.1460-9568.2006.04950.x
  55. Nakayama, H., Miyazaki, T., Kitamura, K., Hashimoto, K., Yanagawa, Y., Obata, K., Sakimura, K., Watanabe, M., and Kano, M. (2012). GABAergic inhibition regulates developmental synapse elimination in the cerebellum. Neuron 74, 384-396. https://doi.org/10.1016/j.neuron.2012.02.032
  56. Napper, R.M., and Harvey, R.J. (1988). Number of parallel fiber synapses on an individual Purkinje cell in the cerebellum of the rat. J. Comp. Neurol. 274, 168-177. https://doi.org/10.1002/cne.902740204
  57. Nguyen, Q.A., Horn, M.E., and Nicoll, R.A. (2016). Distinct roles for extracellular and intracellular domains in neuroligin function at inhibitory synapses. Elife 5.
  58. Nishimura-Akiyoshi, S., Niimi, K., Nakashiba, T., and Itohara, S. (2007). Axonal netrin-Gs transneuronally determine lamina-specific subdendritic segments. Proc. Natl. Acad Sci U S A 104, 14801-14806. https://doi.org/10.1073/pnas.0706919104
  59. O'Sullivan, M.L., de Wit, J., Savas, J.N., Comoletti, D., Otto-Hitt, S., Yates, J.R., 3rd and Ghosh, A. (2012). FLRT proteins are endogenous latrophilin ligands and regulate excitatory synapse development. Neuron 73, 903-910. https://doi.org/10.1016/j.neuron.2012.01.018
  60. Otsuka, S., Konno, K., Abe, M., Motohashi, J., Kohda, K., Sakimura, K., Watanabe, M., and Yuzaki, M. (2016). Roles of Cbln1 in nonmotor functions of mice. J. Neurosci. 36, 11801-11816. https://doi.org/10.1523/JNEUROSCI.0322-16.2016
  61. Paul, A., Crow, M., Raudales, R., He, M., Gillis, J., and Huang, Z.J. (2017). Transcriptional architecture of synaptic communication delineates GABAergic neuron identity. Cell 171, 522-539 e520. https://doi.org/10.1016/j.cell.2017.08.032
  62. Roh, J.D., Choi, S.Y., Cho, Y.S., Choi, T.Y., Park, J.S., Cutforth, T., Chung, W., Park, H., Lee, D., Kim, M.H., et al. (2017). Increased excitatory synaptic transmission of dentate granule neurons in mice lacking PSD-95-interacting adhesion molecule Neph2/Kirrel3 during the early postnatal eriod. Front Mol. Neurosci. 10, 81.
  63. Ruediger, S., Vittori, C., Bednarek, E., Genoud, C., Strata, P., Sacchetti, B., and Caroni, P. (2011). Learning-related feedforward inhibitory connectivity growth required for memory precision. Nature 473, 514-518. https://doi.org/10.1038/nature09946
  64. Sasaki, T., Leutgeb, S., and Leutgeb, J.K. (2015). Spatial and memory circuits in the medial entorhinal cortex. Curr. Opin. Neurobiol. 32, 16-23. https://doi.org/10.1016/j.conb.2014.10.008
  65. Sassoe-Pognetto, M., and Patrizi, A. (2017). The Purkinje cell as a model of synaptogenesis and synaptic specificity. Brain Res. Bull. 129, 12-17. https://doi.org/10.1016/j.brainresbull.2016.10.004
  66. Shekhar, K., Lapan, S.W., Whitney, I.E., Tran, N.M., Macosko, E.Z., Kowalczyk, M., Adiconis, X., Levin, J.Z., Nemesh, J., Goldman, M., et al. (2016). Comprehensive classification of retinal bipolar neurons by single-cell transcriptomics. Cell 166, 1308-1323 e1330. https://doi.org/10.1016/j.cell.2016.07.054
  67. Shen, K., and Scheiffele, P. (2010). Genetics and cell biology of building specific synaptic connectivity. Annu. Rev. Neurosci. 33, 473-507. https://doi.org/10.1146/annurev.neuro.051508.135302
  68. Sigoillot, S.M., Iyer, K., Binda, F., Gonzalez-Calvo, I., Talleur, M., Vodjdani, G., Isope, P., and Selimi, F. (2015). The secreted protein C1QL1 and its receptor BAI3 control the synaptic connectivity of excitatory inputs converging on cerebellar purkinje cells. Cell Rep. pii: S2211-1247(15)00059-5.
  69. Silva, J.P., Lelianova, V.G., Ermolyuk, Y.S., Vysokov, N., Hitchen, P.G., Berninghausen, O., Rahman, M.A., Zangrandi, A., Fidalgo, S., Tonevitsky, A.G., et al. (2011). Latrophilin 1 and its endogenous ligand Lasso/teneurin-2 form a high-affinity transsynaptic receptor pair with signaling capabilities. Proc. Natl. Acad. Sci. USA 108, 12113-12118. https://doi.org/10.1073/pnas.1019434108
  70. Spruston, N. (2008). Pyramidal neurons: dendritic structure and synaptic integration. Nat. Rev. Neurosci. 9, 206-221. https://doi.org/10.1038/nrn2286
  71. Sudhof, T.C. (2017a). Molecular neuroscience in the 21st century: a personal perspective. Neuron 96, 536-541. https://doi.org/10.1016/j.neuron.2017.10.005
  72. Sudhof, T.C. (2017b). Synaptic neurexin complexes: A molecular code for the logic of neural circuits. Cell 171, 745-769. https://doi.org/10.1016/j.cell.2017.10.024
  73. Suh, J., Rivest, A.J., Nakashiba, T., Tominaga, T., and Tonegawa, S. (2011). Entorhinal cortex layer III input to the hippocampus is crucial for temporal association memory. Science 334, 1415-1420. https://doi.org/10.1126/science.1210125
  74. Sylwestrak, E.L., and Ghosh, A. (2012). Elfn1 regulates target-specific release probability at CA1-interneuron synapses. Science 338, 536-540. https://doi.org/10.1126/science.1222482
  75. Tomioka, N.H., Yasuda, H., Miyamoto, H., Hatayama, M., Morimura, N., Matsumoto, Y., Suzuki, T., Odagawa, M., Odaka, Y.S., Iwayama, Y., et al. (2014). Elfn1 recruits presynaptic mGluR7 in trans and its loss results in seizures. Nat Commun 5, 4501. https://doi.org/10.1038/ncomms5501
  76. Torborg, C.L., Nakashiba, T., Tonegawa, S., and McBain, C.J. (2010). Control of CA3 output by feedforward inhibition despite developmental changes in the excitation-inhibition balance. J Neurosci 30, 15628-15637. https://doi.org/10.1523/JNEUROSCI.3099-10.2010
  77. Uemura, T., Lee, S.J., Yasumura, M., Takeuchi, T., Yoshida, T., Ra, M., Taguchi, R., Sakimura, K., and Mishina, M. (2010). Trans-synaptic interaction of GluRdelta2 and Neurexin through Cbln1 mediates synapse formation in the cerebellum. Cell 141, 1068-1079. https://doi.org/10.1016/j.cell.2010.04.035
  78. Uesaka, N., Uchigashima, M., Mikuni, T., Hirai, H., Watanabe, M., and Kano, M. (2015). Retrograde signaling for climbing fiber synapse elimination. Cerebellum 14, 4-7. https://doi.org/10.1007/s12311-014-0615-y
  79. Um, J.W., and Ko, J. (2013). LAR-RPTPs: synaptic adhesion molecules that shape synapse development. Trends Cell Biol 23, 465-475. https://doi.org/10.1016/j.tcb.2013.07.004
  80. Um, J.W., and Ko, J. (2017). Neural Glycosylphosphatidylinositol-Anchored Proteins in Synaptic Specification. Trends Cell Biol 27, 931-945. https://doi.org/10.1016/j.tcb.2017.06.007
  81. Watanabe, M., and Kano, M. (2011). Climbing fiber synapse elimination in cerebellar Purkinje cells. Eur. J. Neurosci. 34, 1697-1710. https://doi.org/10.1111/j.1460-9568.2011.07894.x
  82. Williams, M.E., de Wit, J., and Ghosh, A. (2010). Molecular mechanisms of synaptic specificity in developing neural circuits. Neuron 68, 9-18. https://doi.org/10.1016/j.neuron.2010.09.007
  83. Williams, M.E., Wilke, S.A., Daggett, A., Davis, E., Otto, S., Ravi, D., Ripley, B., Bushong, E.A., Ellisman, M.H., Klein, G., et al. (2011). Cadherin-9 regulates synapse-specific differentiation in the developing hippocampus. Neuron 71, 640-655. https://doi.org/10.1016/j.neuron.2011.06.019
  84. Witter, M.P., Naber, P.A., van Haeften, T., Machielsen, W.C., Rombouts, S.A., Barkhof, F., Scheltens, P., and Lopes da Silva, F.H. (2000a). Cortico-hippocampal communication by way of parallel parahippocampal-subicular pathways. Hippocampus 10, 398-410. https://doi.org/10.1002/1098-1063(2000)10:4<398::AID-HIPO6>3.0.CO;2-K
  85. Witter, M.P., Wouterlood, F.G., Naber, P.A., and Van Haeften, T. (2000b). Anatomical organization of the parahippocampalhippocampal network. Ann. N Y Acad. Sci. 911, 1-24.
  86. Zhang, B., and Sudhof, T.C. (2016). Neuroligins are selectively essential for NMDAR signaling in cerebellar stellate interneurons. J. Neurosci. 36, 9070-9083. https://doi.org/10.1523/JNEUROSCI.1356-16.2016
  87. Zhang, B., Chen, L.Y., Liu, X., Maxeiner, S., Lee, S.J., Gokce, O., and Sudhof, T.C. (2015). Neuroligins sculpt cerebellar purkinje-cell circuits by differential control of distinct classes of synapses. Neuron 87, 781-796. https://doi.org/10.1016/j.neuron.2015.07.020

Cited by

  1. A muscle-epidermis-glia signaling axis sustains synaptic specificity during allometric growth in Caenorhabditis elegans vol.9, pp.None, 2020, https://doi.org/10.7554/elife.55890
  2. Translational Inhibition of α-Neurexin 2 vol.10, pp.None, 2020, https://doi.org/10.1038/s41598-020-60289-8