References
- Adler, B. and de la Pena Moctezuma, A. 2010. Leptospira and leptospirosis. Vet. Microbiol. 140, 287-296. https://doi.org/10.1016/j.vetmic.2009.03.012
- Aldridge, P. and Hughes, K. T. 2002. Regulation of flagellar assembly. Curr. Opin. Microbiol. 5, 160-165. https://doi.org/10.1016/S1369-5274(02)00302-8
- Arvikar, S. L. and Steere, A. C. 2015. Diagnosis and treatment of Lyme arthritis. Infect. Dis. Clin. North. Am. 29, 269-280. https://doi.org/10.1016/j.idc.2015.02.004
- Bacon, R. M., Kugeler, K. J. and Mead, P. S. Centers for Disease and Prevention (CDC). 2008. Surveillance for Lyme disease--United States, 1992-2006. MMWR. Surveill. Summ. 57, 1-9.
- Bakker, R. G., Li, C., Miller, M. R., Cunningham, C. and Charon, N. W. 2007. Identification of specific chemoattractants and genetic complementation of a Borrelia burgdorferi chemotaxis mutant: flow cytometry-based capillary tube chemotaxis assay. Appl. Environ. Microbiol. 73, 1180-1188. https://doi.org/10.1128/AEM.01913-06
- Balmelli, T. and Piffaretti, J. C. 1995. Association between different clinical manifestations of Lyme disease and different species of Borrelia burgdorferi sensu lato. Res. Microbiol. 146, 329-340. https://doi.org/10.1016/0923-2508(96)81056-4
- Ben-Menachem, G., Kubler-Kielb, J., Coxon, B., Yergey, A. and Schneerson, R. 2003. A newly discovered cholesteryl galactoside from Borrelia burgdorferi. Proc. Natl. Acad. Sci. USA 100, 7913-7918. https://doi.org/10.1073/pnas.1232451100
- Bischoff, D. S. and Ordal, G. W. 1992. Bacillus subtilis chemotaxis: a deviation from the Escherichia coli paradigm. Mol. Microbiol. 6, 23-28. https://doi.org/10.1111/j.1365-2958.1992.tb00833.x
- Bockenstedt, L. K., Gonzalez, D., Mao, J., Li, M., Belperron, A. A. and Haberman, A. 2014. What ticks do under your skin: two-photon intravital imaging of Ixodes scapularis feeding in the presence of the lyme disease spirochete. Yale. J. Biol. Med. 87, 3-13.
- Bockenstedt, L. K. and Wormser, G. P. 2014. Review: unraveling Lyme disease. Arthritis. Rheumatol. 66, 2313-2323. https://doi.org/10.1002/art.38756
- Chao, X., Muff, T. J., Park, S. Y., Zhang, S., Pollard, A. M., Ordal, G. W., Bilwes, A. M. and Crane, B. R. 2006. A receptor-modifying deamidase in complex with a signaling phosphatase reveals reciprocal regulation. Cell 124, 561-571. https://doi.org/10.1016/j.cell.2005.11.046
- Charon, N. W., Cockburn, A., Li, C., Liu, J., Miller, K. A., Miller, M. R., Motaleb, M. A. and Wolgemuth, C. W. 2012. The unique paradigm of spirochete motility and chemotaxis. Annu. Rev. Microbiol. 66, 349-370. https://doi.org/10.1146/annurev-micro-092611-150145
- Charon, N. W. and Goldstein, S. F. 2002. Genetics of motility and chemotaxis of a fascinating group of bacteria: the spirochetes. Annu. Rev. Genet. 36, 47-73. https://doi.org/10.1146/annurev.genet.36.041602.134359
- Chen, S., Beeby, M., Murphy, G. E., Leadbetter, J. R., Hendrixson, D. R., Briegel, A., Li, Z., Shi, J., Tocheva, E. I., Muller, A., Dobro, M. J. and Jensen, G. J. 2011. Structural diversity of bacterial flagellar motors. EMBO. J. 30, 2972-2981. https://doi.org/10.1038/emboj.2011.186
- Chevance, F. F. and Hughes, K. T. 2008. Coordinating assembly of a bacterial macromolecular machine. Nat. Rev. Microbiol. 6, 455-465. https://doi.org/10.1038/nrmicro1887
- Dashper, S. G., Seers, C. A., Tan, K. H. and Reynolds, E. C. 2011. Virulence factors of the oral spirochete Treponema denticola. J. Dent. Res. 90, 691-703. https://doi.org/10.1177/0022034510385242
- de Silva, A. M., Telford, S. R. 3rd, Brunet, L. R., Barthold, S. W. and Fikrig, E. 1996. Borrelia burgdorferi OspA is an arthropod-specific transmission-blocking Lyme disease vaccine. J. Exp. Med. 183, 271-275. https://doi.org/10.1084/jem.183.1.271
- Dombrowski, C., Kan, W., Motaleb, M. A., Charon, N. W., Goldstein, R. E. and Wolgemuth, C. W. 2009. The elastic basis for the shape of Borrelia burgdorferi. Biophys. J. 96, 4409-4417. https://doi.org/10.1016/j.bpj.2009.02.066
- Feng, J., Shi, W., Zhang, S., Sullivan, D., Auwaerter, P. G. and Zhang, Y. 2016. A drug combination screen identifies drugs active against amoxicillin-induced round bodies of in vitro Borrelia burgdorferi persisters from an FDA drug library. Front. Microbiol. 7, 743.
- Fraser, C. M., Casjens, S., Huang, W. M., Sutton, G. G., Clayton, R., Lathigra, R., White, O., Ketchum, K. A., Dodson, R., Hickey, E. K., Gwinn, M., Dougherty, B., Tomb, J. F., Fleischmann, R. D., Richardson, D., Peterson, J., Kerlavage, A. R., Quackenbush, J., Salzberg, S., Hanson, M., van Vugt, R., Palmer, N., Adams, M. D., Gocayne, J., Weidman, J., Utterback, T., Watthey, L., McDonald, L., Artiach, P., Bowman, C., Garland, S., Fuji, C., Cotton, M. D., Horst, K., Roberts, K., Hatch, B., Smith, H. O. and Venter, J. C. 1997. Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi. Nature 390, 580-586. https://doi.org/10.1038/37551
- Garrity, L. F. and Ordal, G. W. 1995. Chemotaxis in Bacillus subtilis: how bacteria monitor environmental signals. Pharmacol. Ther. 68, 87-104. https://doi.org/10.1016/0163-7258(95)00027-5
- Ge, Y. and Charon, N. W. 1997. FlaA, a putative flagellar outer sheath protein, is not an immunodominant antigen associated with Lyme disease. Infect. Immun. 65, 2992-2995.
- Giacani, L. and Lukehart, S. A. 2014. The endemic treponematoses. Clin. Microbiol. Rev. 27, 89-115. https://doi.org/10.1128/CMR.00070-13
- Glekas, G. D., Plutz, M. J., Walukiewicz, H. E., Allen, G. M., Rao, C. V. and Ordal, G. W. 2012. Elucidation of the multiple roles of CheD in Bacillus subtilis chemotaxis. Mol. Microbiol. 86, 743-756. https://doi.org/10.1111/mmi.12015
- Goldstein, S. F., Buttle, K. F. and Charon, N. W. 1996. Structural analysis of the Leptospiraceae and Borrelia burgdorferi by high-voltage electron microscopy. J. Bacteriol. 178, 6539-6545. https://doi.org/10.1128/jb.178.22.6539-6545.1996
- Goldstein, S. F., Charon, N. W. and Kreiling, J. A. 1994. Borrelia burgdorferi swims with a planar waveform similar to that of eukaryotic flagella. Proc. Natl. Acad. Sci. USA. 91, 3433-3437. https://doi.org/10.1073/pnas.91.8.3433
- Guerau-de-Arellano, M. and Huber, B. T. 2002. Development of autoimmunity in Lyme arthritis. Curr. Opin. Rheumatol. 14, 388-393. https://doi.org/10.1097/00002281-200207000-00009
- Guyard, C., Raffel, S. J., Schrumpf, M. E., Dahlstrom, E., Sturdevant, D., Ricklefs, S. M., Martens, C., Hayes, S. F., Fischer, E. R., Hansen, B. T., Porcella, S. F. and Schwan, T. G. 2013. Periplasmic flagellar export apparatus protein, FliH, is involved in post-transcriptional regulation of FlaB, motility and virulence of the relapsing fever spirochete Borrelia hermsii. PLoS One 8, e72550. https://doi.org/10.1371/journal.pone.0072550
- Haake, D. A. and Levett, P. N. 2015. Leptospirosis in humans. Curr. Top. Microbiol. Immunol. 387, 65-97.
- Hazelbauer, G. L. 2012. Bacterial chemotaxis: the early years of molecular studies. Annu. Rev. Microbiol. 66, 285-303. https://doi.org/10.1146/annurev-micro-092611-150120
- Herzer, P., Fingerle, V., Pfister, H. W. and Krause, A. 2014. [Lyme borreliosis]. Internist (Berl). 55, 789-802; quiz 803-804. https://doi.org/10.1007/s00108-013-3412-7
- Hovind-Hougen, K. 1984. Ultrastructure of spirochetes isolated from Ixodes ricinus and Ixodes dammini. Yale. J. Biol. Med. 57, 543-548.
- Karna, S. L., Sanjuan E., Esteve-Gassent, M. D., Miller, C. L., Maruskova, M. and Seshu, J. 2011. CsrA modulates levels of lipoproteins and key regulators of gene expression critical for pathogenic mechanisms of Borrelia burgdorferi. Infect. Immun. 79, 732-744. https://doi.org/10.1128/IAI.00882-10
- Ko, A. I., Goarant, C. and Picardeau, M. 2009. Leptospira: the dawn of the molecular genetics era for an emerging zoonotic pathogen. Nat. Rev. Microbiol. 7, 736-747. https://doi.org/10.1038/nrmicro2208
- Kristich, C. J. and Ordal, G. W. 2002. Bacillus subtilis CheD is a chemoreceptor modification enzyme required for chemotaxis. J. Biol. Chem. 277, 25356-25362. https://doi.org/10.1074/jbc.M201334200
- Kudryashev, M., Cyrklaff, M., Baumeister, W., Simon, M. M., Wallich, R. and Frischknecht, F. 2009. Comparative cryoelectron tomography of pathogenic Lyme disease spirochetes. Mol. Microbiol. 71, 1415-34. https://doi.org/10.1111/j.1365-2958.2009.06613.x
- Kuehn, B. M. 2013. CDC estimates 300,000 US cases of Lyme disease annually. JAMA. 310, 1110. https://doi.org/10.1001/jama.2013.278331
- Lambert, A., Picardeau, M., Haake, D. A., Sermswan, R. W., Srikram, A., Adler, B. and Murray, G. A. 2012. FlaA proteins in Leptospira interrogans are essential for motility and virulence but are not required for formation of the flagellum sheath. Infect. Immun. 80, 2019-2025. https://doi.org/10.1128/IAI.00131-12
- Li, C., Bakker, R. G., Motaleb, M. A., Sartakova, M. L., Cabello, F. C. and Charon, N. W. 2002. Asymmetrical flagellar rotation in Borrelia burgdorferi nonchemotactic mutants. Proc. Natl. Acad. Sci. USA. 99, 6169-6174. https://doi.org/10.1073/pnas.092010499
- Liao, S., Sun, A., Ojcius, D. M., Wu, S., Zhao, J. and Yan, J. 2009. Inactivation of the fliY gene encoding a flagellar motor switch protein attenuates mobility and virulence of Leptospira interrogans strain Lai. BMC. Microbiol. 9, 253. https://doi.org/10.1186/1471-2180-9-253
- Lin, T., Gao L., Zhang, C., Odeh, E., Jacobs, M. B., Coutte, L., Chaconas, G., Philipp, M. T. and Norris, S. J. 2012. Analysis of an ordered, comprehensive STM mutant library in infectious Borrelia burgdorferi: insights into the genes required for mouse infectivity. PLoS One 7, e47532. https://doi.org/10.1371/journal.pone.0047532
- Liu, J., Lin, T., Botkin, D. J., McCrum, E., Winkler, H. and Norris, S. J. 2009. Intact flagellar motor of Borrelia burgdorferi revealed by cryo-electron tomography: evidence for stator ring curvature and rotor/C-ring assembly flexion. J. Bacteriol. 191, 5026-5036. https://doi.org/10.1128/JB.00340-09
- Lux, R., Miller, J. N., Park, N. H. and Shi, W. 2001. Motility and chemotaxis in tissue penetration of oral epithelial cell layers by Treponema denticola. Infect. Immun. 69, 6276-6283. https://doi.org/10.1128/IAI.69.10.6276-6283.2001
- Moon, K. H., Hobbs, G. and Motaleb, M. A. 2016. Borrelia burgdorferi CheD Promotes Various Functions in Chemotaxis and the Pathogenic Life Cycle of the Spirochete. Infect. Immun. 84, 1743-1752. https://doi.org/10.1128/IAI.01347-15
- Moon, K. H., Zhao, X., Manne, A., Wang, J., Yu, Z., Liu, J. and Motaleb, M. A. 2016. Spirochetes flagellar collar protein FlbB has astounding effects in orientation of periplasmic flagella, bacterial shape, motility, and assembly of motors in Borrelia burgdorferi. Mol. Microbiol. 102, 336-348. https://doi.org/10.1111/mmi.13463
- Motaleb, M. A., Corum, L., Bono, J. L., Elias, A. F., Rosa, P., Samuels, D. S. and Charon, N. W. 2000. Borrelia burgdorferi periplasmic flagella have both skeletal and motility functions. Proc. Natl. Acad. Sci. USA. 97, 10899-10904. https://doi.org/10.1073/pnas.200221797
- Motaleb, M. A., Liu, J. and Wooten, R. M. 2015. Spirochetal motility and chemotaxis in the natural enzootic cycle and development of Lyme disease. Curr. Opin. Microbiol. 28, 106-113. https://doi.org/10.1016/j.mib.2015.09.006
- Motaleb, M. A., Miller, M. R., Li, C., Bakker, R. G., Goldstein, S. F., Silversmith, R. E., Bourret, R. B. and Charon, N. W. 2005. CheX is a phosphorylated CheY phosphatase essential for Borrelia burgdorferi chemotaxis. J. Bacteriol. 187, 7963-7969. https://doi.org/10.1128/JB.187.23.7963-7969.2005
- Motaleb, M. A., Miller, M. R., Li, C. and Charon, N. W. 2007. Phosphorylation assays of chemotaxis two-component system proteins in Borrelia burgdorferi. Methods. Enzymol. 422, 438-447.
- Motaleb, M. A., Pitzer, J. E., Sultan, S. Z. and Liu, J. 2011. A novel gene inactivation system reveals altered periplasmic flagellar orientation in a Borrelia burgdorferi fliL mutant. J. Bacteriol. 193, 3324-3331. https://doi.org/10.1128/JB.00202-11
- Motaleb, M. A., Sal, M. S. and Charon, N. W. 2004. The decrease in FlaA observed in a flaB mutant of Borrelia burgdorferi occurs posttranscriptionally. J. Bacteriol. 186, 3703-3711. https://doi.org/10.1128/JB.186.12.3703-3711.2004
- Motaleb, M. A., Sultan, S. Z., Miller, M. R., Li, C. and Charon, N. W. 2011. CheY3 of Borrelia burgdorferi is the key response regulator essential for chemotaxis and forms a long-lived phosphorylated intermediate. J. Bacteriol. 193, 3332-3341. https://doi.org/10.1128/JB.00362-11
- Muff, T. J. and Ordal, G. W. 2007. The CheC phosphatase regulates chemotactic adaptation through CheD. J. Biol. Chem. 282, 34120-34128. https://doi.org/10.1074/jbc.M706432200
- Murray, T. S. and Shapiro, E. D. 2010. Lyme disease. Clin. Lab. Med. 30, 311-328. https://doi.org/10.1016/j.cll.2010.01.003
- Novak, E. A., Sekar, P., Xu, H., Moon, K. H., Manne, A., Wooten, R. M. and Motaleb, M. A. 2016. The Borrelia burgdorferi CheY3 response regulator is essential for chemotaxis and completion of its natural infection cycle. Cell. Microbiol. 18, 1782-1799. https://doi.org/10.1111/cmi.12617
- Novak, E. A., Sultan, S. Z. and Motaleb, M. A. 2014. The cyclic-di-GMP signaling pathway in the Lyme disease spirochete, Borrelia burgdorferi. Front. Cell. Infect. Microbiol. 4, 56.
- Ohnishi, J., Piesman, J. and de Silva, A. M. 2001. Antigenic and genetic heterogeneity of Borrelia burgdorferi populations transmitted by ticks. Proc. Natl. Acad. Sci. USA. 98, 670-675. https://doi.org/10.1073/pnas.98.2.670
- Pal, U., Li, X., Wang, T., Montgomery, R. R., Ramamoorthi, N., Desilva, A. M., Bao, F., Yang, X., Pypaert, M., Pradhan, D., Kantor, F. S., Telford, S., Anderson, J. F. and Fikrig, E. 2004. TROSPA, an Ixodes scapularis receptor for Borrelia burgdorferi. Cell 119, 457-468. https://doi.org/10.1016/j.cell.2004.10.027
- Park, S. Y., Lowder, B., Bilwes, A. M., Blair, D. F. and Crane, B. R. 2006. Structure of FliM provides insight into assembly of the switch complex in the bacterial flagella motor. Proc. Natl. Acad. Sci. USA. 103, 11886-11891. https://doi.org/10.1073/pnas.0602811103
- Pitzer, J. E., Sultan, S. Z., Hayakawa, Y., Hobbs, G., Miller, M. R. and Motaleb, M. A. 2011. Analysis of the Borrelia burgdorferi cyclic-di-GMP-binding protein PlzA reveals a role in motility and virulence. Infect. Immun. 79, 1815-1825. https://doi.org/10.1128/IAI.00075-11
- Porter, S. L., Wadhams, G. H. and Armitage, J. P. 2011. Signal processing in complex chemotaxis pathways. Nat. Rev. Microbiol. 9, 153-165. https://doi.org/10.1038/nrmicro2505
- Radolf, J. D., Caimano, M. J., Stevenson, B. and Hu, L. T. 2012. Of ticks, mice and men: understanding the dual-host lifestyle of Lyme disease spirochaetes. Nat. Rev. Microbiol. 10, 87-99. https://doi.org/10.1038/nrmicro2714
- Rollend, L., Fish, D. and Childs, J. E. 2013. Transovarial transmission of Borrelia spirochetes by Ixodes scapularis: a summary of the literature and recent observations. Ticks. Tick. Borne. Dis. 4, 46-51. https://doi.org/10.1016/j.ttbdis.2012.06.008
- Rosa, P. A., Tilly, K. and Stewart, P. E. 2005. The burgeoning molecular genetics of the Lyme disease spirochaete. Nat. Rev. Microbiol. 3, 129-143. https://doi.org/10.1038/nrmicro1086
- Rosey, E. L., Kennedy, M. J. and Yancey, R. J. Jr. 1996. Dual flaA1 flaB1 mutant of Serpulina hyodysenteriae expressing periplasmic flagella is severely attenuated in a murine model of swine dysentery. Infect. Immun. 64, 4154-4162.
- Sal, M. S., Li, C., Motalab, M. A., Shibata, S., Aizawa, S. and Charon, N. W. 2008. Borrelia burgdorferi uniquely regulates its motility genes and has an intricate flagellar hook-basal body structure. J. Bacteriol. 190, 1912-1921. https://doi.org/10.1128/JB.01421-07
- Sanchez, J. L. 2015. Clinical manifestations and treatment of lyme disease. Clin. Lab. Med. 35, 765-778. https://doi.org/10.1016/j.cll.2015.08.004
- Sanjuan, E., Esteve-Gassent, M. D., Maruskova, M. and Seshu, J. 2009. Overexpression of CsrA (BB0184) alters the morphology and antigen profiles of Borrelia burgdorferi. Infect. Immun. 77, 5149-5162. https://doi.org/10.1128/IAI.00673-09
- Sapi, E., Kaur, N., Anyanwu, S., Luecke, D. F., Datar, A., Patel, S., Rossi, M. and Stricker, R. B. 2011. Evaluation of in-vitro antibiotic susceptibility of different morphological forms of Borrelia burgdorferi. Infect. Drug. Resist. 4, 97-113.
- Sarkar, M. K., Paul, K. and Blair, D. 2010. Chemotaxis signaling protein CheY binds to the rotor protein FliN to control the direction of flagellar rotation in Escherichia coli. Proc. Natl. Acad. Sci. USA. 107, 9370-9375. https://doi.org/10.1073/pnas.1000935107
- Schwan, T. G. and Piesman, J. 2000. Temporal changes in outer surface proteins A and C of the lyme disease-associated spirochete, Borrelia burgdorferi, during the chain of infection in ticks and mice. J. Clin. Microbiol. 38, 382-388.
- Shih, C. M., Chao, L. L. and Yu, C. P. 2002. Chemotactic migration of the Lyme disease spirochete (Borrelia burgdorferi) to salivary gland extracts of vector ticks. Am. J. Trop. Med. Hyg. 66, 616-621. https://doi.org/10.4269/ajtmh.2002.66.616
- Smith, R. P., Schoen, R. T., Rahn, D. W., Sikand, V. K., Nowakowski, J., Parenti, D. L., Holman, M. S., Persing, D. H. and Steere, A. C. 2002. Clinical characteristics and treatment outcome of early Lyme disease in patients with microbiologically confirmed erythema migrans. Ann. Intern. Med. 136, 421-428. https://doi.org/10.7326/0003-4819-136-6-200203190-00005
- Sourjik, V. and Wingreen, N. S. 2012. Responding to chemical gradients: bacterial chemotaxis. Curr. Opin. Cell. Biol. 24, 262-268. https://doi.org/10.1016/j.ceb.2011.11.008
- Steere, A. C., Duray, P. H. and Butcher, E. C. 1988. Spirochetal antigens and lymphoid cell surface markers in Lyme synovitis. Comparison with rheumatoid synovium and tonsillar lymphoid tissue. Arthritis. Rheum. 31, 487-495. https://doi.org/10.1002/art.1780310405
- Steere, A. C., Gross, D., Meyer, A. L. and Huber, B. T. 2001. Autoimmune mechanisms in antibiotic treatment-resistant lyme arthritis. J. Autoimmun. 16, 263-268. https://doi.org/10.1006/jaut.2000.0495
- Sultan, S. Z., Manne, A., Stewart, P. E., Bestor, A., Rosa, P. A., Charon. N. W. and Motaleb, M. A. 2013. Motility is crucial for the infectious life cycle of Borrelia burgdorferi. Infect. Immun. 81, 2012-2021. https://doi.org/10.1128/IAI.01228-12
- Sultan, S. Z., Pitzer, J. E., Boquoi, T., Hobbs, G., Miller, M. R. and Motaleb, M. A. 2011. Analysis of the HD-GYP domain cyclic dimeric GMP phosphodiesterase reveals a role in motility and the enzootic life cycle of Borrelia burgdorferi. Infect. Immun. 79, 3273-3283. https://doi.org/10.1128/IAI.05153-11
- Sultan, S. Z., Pitzer, J. E., Miller, M. R. and Motaleb, M. A. 2010. Analysis of a Borrelia burgdorferi phosphodiesterase demonstrates a role for cyclic-di-guanosine monophosphate in motility and virulence. Mol. Microbiol. 77, 128-142. https://doi.org/10.1111/j.1365-2958.2010.07191.x
- Sultan, S. Z., Sekar, P., Zhao, X., Manne, A., Liu, J., Wooten, R. M. and Motaleb, M. A. 2015. Motor rotation is essential for the formation of the periplasmic flagellar ribbon, cellular morphology, and Borrelia burgdorferi persistence within Ixodes scapularis tick and murine hosts. Infect. Immun. 83, 1765-1777. https://doi.org/10.1128/IAI.03097-14
- Sze, C. W. and Li, C. 2011. Inactivation of bb0184, which encodes carbon storage regulator A, represses the infectivity of Borrelia burgdorferi. Infect. Immun. 79, 1270-1279. https://doi.org/10.1128/IAI.00871-10
- Sze, C. W., Morado, D. R., Liu, J., Charon, N. W., Xu, H. and Li, C. 2011. Carbon storage regulator A (CsrA(Bb)) is a repressor of Borrelia burgdorferi flagellin protein FlaB. Mol. Microbiol. 82, 851-864. https://doi.org/10.1111/j.1365-2958.2011.07853.x
- Sze, C. W., Zhang, K., Kariu, T., Pal, U. and Li, C. 2012. Borrelia burgdorferi needs chemotaxis to establish infection in mammals and to accomplish its enzootic cycle. Infect. Immun. 80, 2485-2492. https://doi.org/10.1128/IAI.00145-12
- van Dam, A. P., Kuiper, H., Vos, K., Widjojokusumo, A., de Jongh, B. M., Spanjaard, L., Ramselaar, A. C., Kramer, M. D. and Dankert, J. 1993. Different genospecies of Borrelia burgdorferi are associated with distinct clinical manifestations of Lyme borreliosis. Clin. Infect. Dis. 17, 708-717. https://doi.org/10.1093/clinids/17.4.708
- van Leeuwenhoek, A. 1684. An abstract of a letter from Mr. Anthony Leevvenhoeck at Delft, dated Sep. 17. 1683. Containing some microscopical observations, about animals in the scurf of the teeth, the substance call'd worms in the nose, the cuticula consisting of scales. Philos. Trans. 14, 568-574. https://doi.org/10.1098/rstl.1684.0030
- Xu, H., Raddi, G., Liu, J., Charon, N. W. and Li, C. 2011. Chemoreceptors and flagellar motors are subterminally located in close proximity at the two cell poles in spirochetes. J. Bacteriol. 193, 2652-2656. https://doi.org/10.1128/JB.01530-10
- Xu, H., Sultan, S., Yerke, A., Moon, K. H., Wooten, R. M. and Motaleb, M. A. 2017. Borrelia burgdorferi CheY2 is dispensable for chemotaxis or motility but crucial for the infectious life cycle of the spirochete. Infect. Immun. 85, e00264-16.
- Xue, F., Yan, J. and Picardeau, M. 2009. Evolution and pathogenesis of Leptospira spp.: lessons learned from the genomes. Microbes Infect. 11, 328-333. https://doi.org/10.1016/j.micinf.2008.12.007
- Zhang, K., Liu, J., Tu, Y., Xu, H., Charon, N. W. and Li, C. 2012. Two CheW coupling proteins are essential in a chemosensory pathway of Borrelia burgdorferi. Mol. Microbiol. 85, 782-794. https://doi.org/10.1111/j.1365-2958.2012.08139.x
- Zhao, X., Norris, S. J. and Liu, J. 2014. Molecular architecture of the bacterial flagellar motor in cells. Biochemistry 53, 4323-4333. https://doi.org/10.1021/bi500059y
- Zhao, X., Zhang, K., Boquoi, T., Hu, B., Motaleb, M. A., Miller, K. A., James, M. E., Charon, N. W., Manson, M. D., Norris, S. J., Li, C. and Liu, J. 2013. Cryoelectron tomog raphy reveals the sequential assembly of bacterial flagella in Borrelia burgdorferi. Proc. Natl. Acad. Sci. USA. 110, 14390-14395. https://doi.org/10.1073/pnas.1308306110