DOI QR코드

DOI QR Code

EGCG, genistein, resveratrol 처리에 의한 ATF3와 NAG-1 유전자 발현변화의 p53 의존성 분석

Dependency on p53 in Expression Changes of ATF3 and NAG-1 Induced by EGCG, Genistein, and Resveratrol

  • 김민정 (국립안동대학교 생명과학과) ;
  • 김현지 (국립안동대학교 생명과학과) ;
  • 서유미 (국립안동대학교 생명과학과) ;
  • 이은주 (국립안동대학교 생명과학과) ;
  • 김종식 (국립안동대학교 생명과학과)
  • Kim, Min-Jeong (Department of Biological Sciences, Andong National University) ;
  • Kim, Hyun-Ji (Department of Biological Sciences, Andong National University) ;
  • Seo, Yu-Mi (Department of Biological Sciences, Andong National University) ;
  • Lee, Eun-Joo (Department of Biological Sciences, Andong National University) ;
  • Kim, Jong-Sik (Department of Biological Sciences, Andong National University)
  • 투고 : 2017.11.08
  • 심사 : 2018.05.14
  • 발행 : 2018.05.30

초록

EGCG는 녹차의 카테킨 중의 하나로서 항산화, 항염증 그리고 항암 활성 등 다양한 생리활성을 가지고 있는 물질로 알려져 있다. 본 연구에서는 EGCG를 처리한 HCT116 세포와 p53-null HCT116 세포에서 oligo DNA microarray 실험을 통하여 유전자 발현 변화를 분석하였다. Microarray 실험에서 EGCG를 처리한 HCT116 세포주에서 증가된 유전자 4개(ATF3, CDKN1A, DDIT3, NAG-1)를 선별하여, p53-null HCT116에서의 데이터와 비교하였다. NAG-1을 제외한 3개의 유전자는 p53의 상태와 관계없이 발현이 증가하였고, p53-null HCT116 세포주에서는 EGCG에 의해 NAG-1의 발현이 증가되지 않았다. EGCG의 처리에 의해 ATF3와 NAG-1의 유전자와 단백질의 발현을 확인한 경우 동일한 결과를 보여주었다. 또한, 파이토케미칼 genistein과 resveratrol을 처리한 후 ATF3와 NAG-1의 발현을 연구한 결과 genistein은 p53의 상태와 관계없이 ATF3 발현에 영향을 주지 못하는 반면, NAG-1 단백질은 p53 존재 하에서만 발현이 증가되었다. 이에 반해 resveratrol은 p53의 상태와는 관계없이 ATF3와 NAG-1 단백질의 발현을 증가시켰다. 따라서, 항암 활성을 가진 3 종류의 파이토케미칼이 각각 다른 기전으로 항암 유전자를 발현시키는 것으로 생각된다. 종합적으로 본 연구결과는 파이토케미칼 EGCG, genistein, resveratrol에 의해 매개되는 항암 활성의 기전을 이해하는데 도움을 줄 것으로 생각된다.

Epigallocatechin-3-gallate (EGCG), one of catechins of green tea, has been known to possess anti-oxidation, anti-inflammation, and anti-cancer effects. The present study analyzed global gene expression changes in EGCG-treated HCT116 cells and p53-null HCT116 cells by oligo DNA microarray analysis. Among the differentially expressed genes in EGCG-treated HCT116 cells, four were selected that are known as tumor suppressor genes (activating transcription factor 3 [ATF3], cyclin dependent kinase inhibitor 1A [CDKN1A], DNA damage-inducible transcript 3 [DDIT3] and non-steroidal anti-inflammatory drug activated gene [NAG-1]) and their expression was compared to the expression of genes in p53-null HCT116 cells. We found that the expression of these genes was not dependent on their p53 status except for NAG-1, which was only up-regulated in HCT116. The results of RT-PCR and Western blot analysis showed that ATF3 up-regulation by EGCG was not affected by the presence of p53, whereas NAG-1 expression was not induced in p53-null HCT116 cells. We also detected ATF3 and NAG-1 expression changes through genistein and resveratrol treatment. Interestingly, genistein could not up-regulate ATF3 regardless of p53 status, but genistein could induce NAG-1 only in HCT116 cells. Resveratrol could significantly induce NAG-1 as well as ATF3 independent of p53 presence. These results indicate that EGCG, genistein and resveratrol may have different anti-cancer effects. Overall, the results of this study may help to increase our understandings of molecular mechanisms on anti-cancer activities mediated by EGCG, genistein and resveratrol in human colorectal cancer cells.

키워드

참고문헌

  1. Baek, S. J., Wilson, L. C. and Eling, T. E. 2002. Resveratrol enhances the expression of non-steroidal anti-inflammatory drug-activated gene (NAG-1) by increasing the expression of p53. Carcinogenesis 23, 425-434. https://doi.org/10.1093/carcin/23.3.425
  2. Bottone, F. G. Jr. and Alston-Mills, B. 2011. The dietary compounds resveratrol and genistein induce activating transcription factor 3 while suppressing inhibitor of DNA binding/ differentiation-1. J. Med. Food. 14, 584-593. https://doi.org/10.1089/jmf.2010.0110
  3. Cho, K. N., Sukhthankar, M., Lee, S. H., Yoon, J. H. and Baek, S. J. 2007. Green tea catechin (-)-epicatechin gallate induces tumour suppressor protein ATF3 via EGR-1 activation. Eur. J. Cancer 43, 2404-2412. https://doi.org/10.1016/j.ejca.2007.07.020
  4. Du, G. J., Zhang, Z., Wen, X. D., Yu, C., Calway, T., Yuan, C. S. and Wang, C. Z. 2012. Epigallocatechin Gallate (EGCG) is the most effective cancer chemopreventive polyphenol in green tea. Nutrients 4, 1679-1691. https://doi.org/10.3390/nu4111679
  5. Hackl, C., Lang, S. A., Moser, C., Mori, A., Fichtner-Feigl, S., Hellerbrand, C., Dietmeier, W., Schlitt, H. J., Geissler, E. K. and Stoeltzing, O. 2010. Activating transcription factor-3 (ATF3) functions as a tumor suppressor in colon cancer and is up-regulated upon heat-shock protein 90 (Hsp90) inhibition. BMC Cancer 10, 668. https://doi.org/10.1186/1471-2407-10-668
  6. Huang, C. Y., Han, Z., Li, X., Xie, H. H. and Zhu, S. S. 2017. Mechanism of EGCG promoting apoptosis of MCF-7 cell line in human breast cancer. Oncol. Lett. 14, 3623-3627. https://doi.org/10.3892/ol.2017.6641
  7. Kang, S. U., Lee, B. S., Lee, S. H., Baek, S. J., Shin, Y. S. and Kim, C. H. 2013. Expression of NSAID-activated gene-1 by EGCG in head and neck cancer: involvement of ATM-dependent p53 expression. J. Nutr. Biochem. 24, 986-999. https://doi.org/10.1016/j.jnutbio.2012.07.003
  8. Khan, N. and Mukhtar, H. 2013. Tea and health: studies in humans. Curr. Pharm. Des. 19, 6141-6147. https://doi.org/10.2174/1381612811319340008
  9. Lane, D. and Levine, A. 2010. p53 Research: the past thirty years and the next thirty years. Cold Spring Harb. Perspect. Biol. 2, a000893.
  10. Levav-Cohen, Y., Goldberg, Z., Tan, K. H., Alsheich-Bartok, O., Zuckerman, V., Haupt, S. and Haupt, Y. 2014. The p53-Mdm2 loop: a critical juncture of stress response. Subcell. Biochem. 85, 161-186.
  11. Liu, L., Ju, Y., Wang, J. and Zhou, R. 2017. Epigallocatechin -3-gallate promotes apoptosis and reversal of multidrug resistance in esophageal cancer cells. Pathol. Res. Pract. 213, 1242-1250. https://doi.org/10.1016/j.prp.2017.09.006
  12. Maru, G. B., Hudlikar, R. R., Kumar, G., Gandhi, K. and Mahimkar, M. B. 2016. Understanding the molecular mechanisms of cancer prevention by dietary phytochemicals: From experimental models to clinical trials. World J. Biol. Chem. 7, 88-99. https://doi.org/10.4331/wjbc.v7.i1.88
  13. Mohanty, S, Adhikary, A., Chakrabarty, S., Sa, G. and Das, T. 2012. Operation 'p53 Hunt' to combat cancer: theaflavins in action. Front Biosci. (Schol Ed) 4, 300-320.
  14. Moradzadeh, M., Hosseini, A., Erfanian, S. and Rezaei, H. 2017. Epigallocatechin-3-gallate promotes apoptosis in human breast cancer T47D cells through down-regulation of PI3K/AKT and Telomerase. Pharmacol. Rep. 69, 924-928. https://doi.org/10.1016/j.pharep.2017.04.008
  15. Moseley, V. R., Morris, J., Knackstedt, R. W. and Wargovich, M. J. 2013. Green tea polyphenol epigallocatechin 3-gallate, contributes to the degradation of DNMT3A and HDAC3 in HCT116 human colon cancer cells. Anticancer Res. 33, 5325-5333.
  16. Parrales, A. and Iwakuma, T. 2015. Targeting oncogenic mutant p53 for cancer therapy. Front. Oncol. 5, 288.
  17. Shin, Y. S., Kang, S. U., Park, J. K., Kim, Y. E., Kim, Y. S., Baek, S. J., Lee, S. H. and Kim, C. H. 2016. Anti-cancer effect of (-)-epigallocatechin-3-gallate (EGCG) in head and neck cancer through repression of transactivation and enhanced degradation of ${\beta}$-catenin. Phytomedicine 23, 1344-1355. https://doi.org/10.1016/j.phymed.2016.07.005
  18. Tan, A. C., Konczak, I., Sze, D. M. and Ramzan, I. 2011. Molecular pathways for cancer chemoprevention by dietary phytochemicals. Nutr. Cancer 63, 495-505. https://doi.org/10.1080/01635581.2011.538953
  19. Vanamala, J., Reddivari, L., Radhakrishnan, S. and Tarver, C. 2010. Resveratrol suppresses IGF-1 induced human colon cancer cell proliferation and elevates apoptosis via suppression of IGF-1R/Wnt and activation of p53 signaling pathways. BMC Cancer 10, 238. https://doi.org/10.1186/1471-2407-10-238
  20. Vaseva, A. V. and Moll, U. M. 2009. The mitochondrial p53 pathway. Biochim. Biophys. Acta. 1787, 414-420. https://doi.org/10.1016/j.bbabio.2008.10.005
  21. Wilson, L. C., Baek, S. J., Call, A. and Eling, T. E. 2003. Nonsteroidal anti-inflammatory drug-activated gene (NAG-1) is induced by genistein through the expression of p53 in colorectal cancer cells. Int. J. Cancer 105, 747-753. https://doi.org/10.1002/ijc.11173
  22. Xie, J. J., Xie, Y. M., Chen, B., Pan, F., Guo, J. C., Zhao, Q., Shen, J. H., Wu, Z. Y., Wu, J. Y., Xu, L. Y. and Li, E. M. 2014. ATF3 functions as a novel tumor suppressor with prognostic significance in esophageal squamous cell carcinoma. Oncotarget 5, 8569-8582.
  23. Zhang, Z., Wang, C. Z., Du, G. J., Qi, L. W., Calway, T., He, T. C., Du, W. and Yuan, C. S. 2013. Genistein induces G2/M cell cycle arrest and apoptosis via ATM/p53-dependent pathway in human colon cancer cells. Int. J. Oncol. 43, 289-296. https://doi.org/10.3892/ijo.2013.1946