DOI QR코드

DOI QR Code

Safety of Nano-sized Bee Pollen in both In-vitro and In-vivo Models

생체 외 및 생체 내 실험조건에서 나노화 벌 화분의 안전성 규명

  • Pyeon, Hae-In (Department of Pharmacology, College of Pharmacy, Kyungsung University) ;
  • So, Soojeong (Research Center, Natural Science Biotechnology Co., Ltd.) ;
  • Bak, Jia (Department of Pharmacology, College of Pharmacy, Kyungsung University) ;
  • Lee, Seunghyun (Department of Biotechnology, Daegu Catholic University) ;
  • Lee, Seungmin (Research Center, Natural Science Biotechnology Co., Ltd.) ;
  • Suh, Hwa-Jin (Research Center, Natural Science Biotechnology Co., Ltd.) ;
  • Lim, Je-Oh (Nonclinical Research Institute, Chemon Inc) ;
  • Kim, Jung-Woo (Nonclinical Research Institute, Chemon Inc) ;
  • Kim, Sun Youn (Nonclinical Research Institute, Croen Inc) ;
  • Lee, Se Ra (Nonclinical Research Institute, Croen Inc) ;
  • Lee, Yong Hyun (Nonclinical Research Institute, Croen Inc) ;
  • Chung, Il Kyung (Department of Biotechnology, Daegu Catholic University) ;
  • Choi, Yun-Sik (Department of Pharmacology, College of Pharmacy, Kyungsung University)
  • Received : 2018.03.30
  • Accepted : 2018.04.04
  • Published : 2018.05.30

Abstract

Bee pollen has an outer wall which is resistant to both acidic and basic solutions and even the digestive enzymes in the gastrointestinal tract. Therefore, the oral bioavailability of bee pollen is only 10-15%. A previous study reported on wet-grinding technology which increased the extraction of active ingredients from bee pollen by 11 times. This study was designed to investigate the safety of wet-ground bee pollen. First, a single dose of wet-ground bee pollen was tested in both rats and beagle dogs at dosages of 5, 10, and 20 g/kg and 1.5, 3, and 6 g/kg, respectively. In rats, compound-colored stools were found in those administered 10 g/kg or more of wet-ground bee pollen. In beagle dogs, 6 g/kg of wet-ground bee pollen induced diarrhea in one male for four hours. However, no obvious clinical signs were found through the end of the experiment in rats and beagle dogs. In addition, no histological abnormality was found in all animals. The data indicates that a single dose of up to 20 g/kg of wet-ground bee pollen is safe. Next, the genetic toxicity of nano-sized bee pollen was tested. This study employed a bacterial reverse mutation test, a micronucleus assay, and a chromosomal aberration assay. In the micronucleus assay, there was no genetic toxicity up to the dosage of 2 g/kg. There was also no genetic toxicity in the bacterial reverse mutation test and chromosomal aberration assay. This data provides important information in developing nano-sized bee pollen into more advanced functional foods and herbal medicines.

벌 화분은 영양보조제와 전통의약품으로 오랫동안 사용되어 왔다. 그러나 벌 화분은 두터운 외피를 갖고 있어 산이나 알칼리는 물론 위장관의 소화효소와 기계적 압력에 의해서도 잘 파괴되지 않는 단점이 있다. 이로 인해, 벌 화분을 경구로 섭취할 때 생체이용률은 10-15%에 불과한 실정이다. 이러한 문제점을 극복하기 위해 본 연구진은 이전의 연구에서 습식나노분쇄 기술을 소개하였고 이를 통해 활성성분의 추출률이 약 11배 증가함을 보고하였다. 본 연구에서는 습식나노분쇄를 통해 제조한 나노화 벌 화분의 안전성을 증명하고자 하였다. 먼저, 흰쥐와 비글견에서 단회 투여 독성 시험을 진행하였다. 나노화 벌 화분의 투여 용량은 흰쥐는 5, 10 또는 20 g/kg, 비글견은 1.5, 3 또는 6 g/kg으로 설정하였다. 흰쥐에서는, 10 g/kg 또는 그 이상의 용량을 투여한 동물에서 색변이 관찰되었다. 비글견에서는 6 g/kg 투여군에서 나노화 벌 화분 투여 4시간 후에 설사가 관찰되었다. 그러나, 흰쥐와 비글견 모두에서 뚜렷한 임상증상이 관찰되지 않았으며 안락사 후 부검을 진행한 결과에서도 장기의 이상이 관찰되지 않았다. 다음으로 나노화 벌화분의 유전독성을 복귀돌연변이시험, 염색체이상시험 및 소핵시험을 이용하여 확인하였다. 소핵시험에서는 시험에 사용한 최대용량인 2,000 mg/kg에서도 독성이 발견되지 않았다. 마찬가지로 복귀돌연변이시험과 염색체이상시험에서는 실험에 사용된 최고 농도에서도 독성을 나타내지 않았다. 종합하면 나노화 벌 화분은 본 실험에서 설정한 최고 용량인 20 g/kg/day의 용량까지는 매우 안전한 것으로 판단되며 이러한 결과는 나노화 벌 화분을 기능성 식품 또는 천연물 의약품으로 개발하는 데 중요하게 이용될 것으로 기대된다.

Keywords

References

  1. Babaei, S., Rahimi, S., Karimi Torshizi, M. A., Tahmasebi, G. and Khaleghi Miran, S. N. 2016. Effects of propolis, royal jelly, honey and bee pollen on growth performance and immune system of Japanese quails. Vet. Res. Forum. 7, 13-20.
  2. Bak, J., Pyeon, H. I., So, S., Lee, S., Lee, S., Suh, H. J., Kang, J. S., Choi, Y. S. and Chung, I. K. 2018. Beneficial effects of nano-sized bee pollen on testosterone-induced benign prostatic hyperplasia in rodents. J. Life Sci. 28, 465-471.
  3. Bogdanov, S. 2015. Pollen: production, nutrition and health: A review. www.bee-hexagon.net.
  4. Boppre, M., Colegate, S. M. and Edgar, J. A. 2005. Pyrrolizidine alkaloids of Echium vulgare honey found in pure pollen. J. Agric. Food Chem. 53, 594-600. https://doi.org/10.1021/jf0484531
  5. Campos, M. G. R., Bogdanov, S., de Almeida-Muradian, L. B., Szczesna, T., Mancebo, Y., Frigerio, C. and Ferreira, F. 2008. Pollen composition and standardization of analytical mothods. J. Apicult. Res. 47, 154-161. https://doi.org/10.1080/00218839.2008.11101443
  6. Choi, Y. S., Suh, H. J. and Chung, I. K. 2016. Enhanced extraction of bioactive compounds from bee pollen by wet-grinding technology. J. Life Sci. 26, 651-656. https://doi.org/10.5352/JLS.2016.26.6.651
  7. De Arruda, S. V. A., Pereira, A. A. S., Estevinho, L. M. and de Almeida-Muradian, L. B. 2013. Presence and stability of B complex vitamins in bee pollen using different storage conditions. Food Chem. Toxicol. 51, 143-148. https://doi.org/10.1016/j.fct.2012.09.019
  8. De Grandi-Hoffman, G., Eckholm, B. J. and Hua-Huang, M. 2013. A comparison of bee bread made by Africanized and European honey bees (Apis mellifera) and its effects on hemolymph protein titers. Apidologie 44, 52-63. https://doi.org/10.1007/s13592-012-0154-9
  9. Denisow, B. and Denisow-Pietrzyk, M. 2016. Biological and therapeutic properties of bee pollen: a review. J. Sci. Food Agric. 96, 4303-4309. https://doi.org/10.1002/jsfa.7729
  10. Fatrcova-Sramkova, K., Nozkova, J., Mariassyova, M. and Kacaniova, M. 2016. Biologically active antimicrobial and antioxidant substances in the Helianthus annuus L. bee pollen. J. Environ. Sci. Health B. 51, 176-181. https://doi.org/10.1080/03601234.2015.1108811
  11. Huang, H., Shen, Z., Geng, Q., Wu, Z., Shi, P. and Miao, X. 2017. Protective effect of Schisandra chinensis bee pollen extract on liver and kidney injury induced by cisplatin in rats. Biomed. Pharmacother. 95, 1765-1776. https://doi.org/10.1016/j.biopha.2017.09.083
  12. Kacaniova, M., Rovna, K., Arpasova, H., Hleba, L., Petrova, J., Hascik, P., Cubon, J., Pavelkova, A., Chlebo, R., Bobkova, A. and Stricik, M. 2013. The effects of bee pollen extracts on the broiler chicken's gastrointestinal microflora. Res. Vet. Sci. 95, 34-37. https://doi.org/10.1016/j.rvsc.2013.02.022
  13. Komosinska-Vassev, K., Olczyk, P., Kazmierczak, J., Mencner, L. and Olczyk, K. 2015. Bee pollen: chemical composition and therapeutic application. Evid. Based Complement Alternat. Med. 2015, 297425.
  14. Kroyer, G. and Hegedus, N. 2001. Evaluation of bioactive properties of pollen extracts as functional dietary food supplement. Innov. Food Sci. Emerg. Technol. 2, 171-174. https://doi.org/10.1016/S1466-8564(01)00039-X
  15. Lee, I. K., Hwang, B. S., Kim, D. W., Kim, J. Y., Woo, E. E., Lee, Y. J., Choi, H. J. and Yun, B. S. 2016. Characterization of neuraminidase inhibitors in Korean Papaver rhoeas bee pollen contributing to anti-influenza activities in vitro. Planta Med. 82, 524-529. https://doi.org/10.1055/s-0041-111631
  16. Linskens, H. F. and Jorde, W. 1997. Pollen as food and medicine-a review. Economic. Bot. 51, 78-87. https://doi.org/10.1007/BF02910407
  17. Mauriello, G., De Prisco, A., Di Priscom, G., La Storia, A. and Caprio, E. 2017. Microbial characterization of bee pollen from the Vesuvius area collected by using three different traps. PLoS One 12, 0183208.
  18. Pyeon, H. I., Bak, J., Seok, J. I., So, S., Suh, H. J., Oh, M., Kim, S., Yang, C. E., Chung, I. K. and Choi, Y. S. 2017. Effects of nano-sized bee pollen as a new cosmetic ingredient. Asian J. Beauty Cosmetol. 15, 1-9. https://doi.org/10.20402/ajbc.2016.0078
  19. Rzepecka-Stojko, A., Stojko, J., Jasik, K. and Buszman, E. 2017. Anti-atherogenic activity of polyphenol-rich extract from bee pollen. Nutrients 9, 1369. https://doi.org/10.3390/nu9121369
  20. Salles, J., Cardinault, N., Patrac, V., Berry, A., Giraudet, C., Collin, M. L., Chanet, A., Tagliaferri, C., Denis, P., Pouyet, C., Boirie, Y. and Walrand, S. 2004. Bee pollen improves muscle protein and energy metabolism in malnourished old rats through interfering with the Mtor signaling pathway and mitochondrial activity. Nutrients 6, 5500-5516.
  21. Wang, B., Diao, Q., Zhang, Z., Liu, Y., Gao, Q., Zhou, Y. and Li, S. 2013. Antitumor activity of bee pollen polysaccharides from Rosa rugosa. Mol. Med. Rep. 7, 1555-1558. https://doi.org/10.3892/mmr.2013.1382
  22. Yildiz, O., Can, Z., Saral, O., Yulug, E., Ozturk, F., Aliyazicioglu, R., Canpolat, S. and Kolayli, S. 2013. Hepatoprotective potential of chestnut bee pollen on carbon tetrachloride-induced hepatic damages in rats. Evid. Based Complement. Alternat. Med. 2013, 461478.