DOI QR코드

DOI QR Code

Influence of Electronic-cigarette Smoke on Cardiac Autonomic Nerve Responses in Comparison with Conventional-cigarette Smoke

전자담배흡연이 심장자율신경조절에 미치는 반응: 궐련담배와의 비교 검증

  • Kim, Choun Sub (Sports Science Research Institute, Kyungpook National University) ;
  • Kim, Maeng Kyu (Sports Science Research Institute, Kyungpook National University)
  • 김춘섭 (경북대학교 스포츠과학연구소) ;
  • 김맹규 (경북대학교 스포츠과학연구소)
  • Received : 2017.12.05
  • Accepted : 2018.03.28
  • Published : 2018.05.30

Abstract

This study aims to observe changes in heart-rate variability (HRV) indices induced by e-cigarette and conventional-cigarette smoking and to compare the differences in acute cardiac autonomic regulation. All participants (n=41) were exposed to both e-cigarette smoke (ES) and conventional cigarette smoke (CS) in a randomized crossover trial. HRV analysis was performed during each smoking session based on a recorded r-r interval 10 minutes before smoking and at specified recovery periods (REC1, 0-5 min; REC2, 5-10 min; REC3, 10-15 min; REC4, 15-20 min; REC5, 20-25 min; and REC6, 25-30 min). ES led to a significantly increased cardiac sympathetic index (LF/HF ratio) compared with the baseline, and it shifted the sympathovagal balance toward sympathetic predominance, including reduction in the complexity of the interbeat interval (SampEn). In REC1 after ES, only decreases of parasympathetic indices such as rMSSD, pNN50, HF, and SD1 were indicated. CS sessions produced not only an increased LF/HF ratio during smoking and recovery periods (REC1 and REC4) but also enhanced sympathetic predominance on autonomic balance during smoking and recovery periods (REC1, REC2, and REC4). In the CS trials, parasympathetic indices of time and non-linear analysis (rMSSD, pNN50, and SD1) were decreased during smoking and in REC1 to REC5. SampEn was also reduced during smoking and REC1 to REC4. Acute sympathoexcitatory effects induced by e-cigarette use produced statistically significant results. Parasympathetic withdrawal after smoking suggests that e-cigarettes may cause increased cardiovascular risk.

전 세계적으로 담배흡연자의 심혈관 위험 감소와 금연을 위한 대안으로 전자담배 이용이 급속하게 확산되고 있지만 니코틴을 포함한 잠재적 유해화합물을 함유한 전자담배의 심혈관 효과는 불분명하다. 본 연구는 전자담배 사용에 따른 심장자율신경조절 변화를 관찰하고 급성적인 교감신경흥분효과 및 부교감신경활동 저하 반응을 궐련담배 흡연과 직접 비교하려는 목적으로 수행되었다. 41명의 젊고 건강한 흡연남성들을 대상으로 자료 분석을 수행하였으며, 무작위 교차 설계에 의해 1주의 wash-out period를 적용하여 전자담배와 궐련담배 세션이 각각 실시되었다. 전자담배는 흡연 시를 포함한 흡연 후 5분까지, 궐련담배의 경우 흡연 시 및 흡연 후 최대 30분까지 교감신경활성화 및 부교감신경 감소가 관찰되었다. 두 제품 간 비교에서, 흡연 시를 포함한 흡연 후 30분 동안의 HRV 분석에서 전자담배는 궐련담배에 비해 비교적 교감신경흥분효과 및 부교감신경저하에서 적은 변화수준 및 단시간 변화를 제공하는 것으로 나타났다. 이상의 결과들은 비록 전자담배가 궐련담배에 비해 심장자율신경조절에서 상대적으로 완화된 효과를 제공한다고 할지라도 전자담배 내 니코틴 및 잠재적 위험요인들을 고려해 볼 때 급성적인 교감신경흥분작용 및 부교감신경의 저하를 야기함으로 과도한 사용에 주의가 요구된다.

Keywords

References

  1. American College of Sports Medicine. 2013. ACSM's guidelines for exercise testing and prescription, pp 68-72, 9th ed., Lippincott Williams & Wilkins.
  2. Antelmi, I., De Paula, R. S., Shinzato, A. R., Peres, C. A., Mansur, A. J. and Grupi, C. J. 2004. Influence of age, gender, body mass index, and functional capacity on heart rate variability in a cohort of subjects without heart disease. Am. J. Cardiol. 93, 381-385. https://doi.org/10.1016/j.amjcard.2003.09.065
  3. Bhatnagar, A., Whitsel, L. P., Ribisl, K. M., Bullen, C., Chaloupka, F., Piano, M. R., Robertson, R. M., McAuley, T., Goff, D., Benowitz, N. and Benowitz, N. 2014. Electronic cigarettes: a policy statement from the American Heart Association. Circulation 130, 1418-1436. https://doi.org/10.1161/CIR.0000000000000107
  4. Benowitz, N. L. and Burbank, A. D. 2016. Cardiovascular toxicity of nicotine: Implications for electronic cigarette use. Trends. Cardiovasc. Med. 26, 515-523. https://doi.org/10.1016/j.tcm.2016.03.001
  5. Cheng, T. 2014. Chemical evaluation of electronic cigarettes. Tob. Control. 23, ii11-ii17. https://doi.org/10.1136/tobaccocontrol-2013-051482
  6. Cobb, C. O., Sahmarani, K., Eissenberg, T. and Shihadeh, A. 2012. Acute toxicant exposure and cardiac autonomic dysfunction from smoking a single narghile waterpipe with tobacco and with a "healthy" tobacco-free alternative. Toxicol. Lett. 215, 70-75. https://doi.org/10.1016/j.toxlet.2012.09.026
  7. Dawkins, L. and Corcoran, O. 2014. Acute electronic cigarette use: nicotine delivery and subjective effects in regular users. Psychopharmacology (Berl) 231, 401-407. https://doi.org/10.1007/s00213-013-3249-8
  8. Dinas, P. C., Koutedakis, Y. and Flouris, A. D. 2013. Effects of active and passive tobacco cigarette smoking on heart rate variability. Int. J. Cardiol. 163, 109-115. https://doi.org/10.1016/j.ijcard.2011.10.140
  9. Etter, J. F., Le Houezec, J. and Perneger, T. V. 2003. A selfadministered questionnaire to measure dependence on cigarettes: the cigarette dependence scale. Neuropsychopharmacology 28, 359-370. https://doi.org/10.1038/sj.npp.1300030
  10. Farsalinos, K. E., Spyrou, A., Tsimopoulou, K., Stefopoulos, C., Romagna, G. and Voudris, V. 2014. Nicotine absorption from electronic cigarette use: comparison between first and new-generation devices. Sci. Rep. 4, 4133.
  11. Farsalinos, K. E., Tsiapras, D., Kyrzopoulos, S., Savvopoulou, M. and Voudris, V. 2014. Acute effects of using an electronic nicotine-delivery device (electronic cigarette) on myocardial function: comparison with the effects of regular cigarettes. BMC. Cardiovasc. Disord. 14, 78. https://doi.org/10.1186/1471-2261-14-78
  12. Hayano, J., Yamada, M., Sakakibara, Y., Fujinami, T., Yokoyama, K., Watanabe, Y. and Takata, K. 1990. Short-and long-term effects of cigarette smoking on heart rate variability. Am. J. Cardiol. 65, 84-88.
  13. Hering, D., Somers, V. K., Kara, T., Jazdzewski, K., Jurak, P., Kucharska, W. and Narkiewicz, K. 2008. Heightened acute circulatory responses to smoking in women. Blood Press. 17, 141-146. https://doi.org/10.1080/08037050802185780
  14. Huikuri, H. V., Perkiomaki, J. S., Maestri, R. and Pinna, G. D. 2009. Clinical impact of evaluation of cardiovascular control by novel methods of heart rate dynamics. Philos. Trans. A. Math. Phys. Eng. Sci. 367, 1223-1238. https://doi.org/10.1098/rsta.2008.0294
  15. Karakaya, O., Barutcu, I., Kaya, D., Esen, A. M., Saglam, M., Melek, M., Onrat, E., Turkmen, M., Esen, O. B. and Kaymaz, C. 2007. Acute effect of cigarette smoking on heart rate variability. Angiology 58, 620-624. https://doi.org/10.1177/0003319706294555
  16. Kim, C. S., Kim, M. K., Jung, H. Y. and Kim, M. J. 2017. Effects of exercise training intensity on cardiac autonomic regulation in habitual smokers. Ann. Noninvasive Electrocardiol. 22, e12434. https://doi.org/10.1111/anec.12434
  17. Kobayashi, F., Watanabe, T., Akamatsu, Y., Furui, H., Tomita, T., Ohashi, R. and Hayano, J. 2005. Acute effects of cigarette smoking on the heart rate variability of taxi drivers during work. Scand. J. Work Environ. Health 31, 360-366. https://doi.org/10.5271/sjweh.919
  18. Lee, S. K., Choi, H. M., Kim, J. K., Kim, C. H. and Nho, H. S. 2012. Cardiovascular responses to exercise during acute nicotine abstinence. J. Life Sci. 22, 532-537. https://doi.org/10.5352/JLS.2012.22.4.532
  19. Middlekauff, H. R., Park, J. and Moheimani, R. S. 2014. Adverse effects of cigarette and noncigarette smoke exposure on the autonomic nervous system: mechanisms and implications for cardiovascular risk. J. Am. Coll. Cardiol. 64, 1740-1750. https://doi.org/10.1016/j.jacc.2014.06.1201
  20. Mourot, L., Bouhaddi, M., Perrey, S., Rouillon, J. D. and Regnard, J. 2004. Quantitative poincare plot analysis of heart rate variability: effect of endurance training. Eur. J. Appl. Physiol. 91, 79-87. https://doi.org/10.1007/s00421-003-0917-0
  21. Porta, A., Gnecchi-Ruscone, T., Tobaldini, E., Guzzetti, S., Furlan, R. and Montano, N. 2007. Progressive decrease of heart period variability entropy-based complexity during graded head-up tilt. J. Appl. Physiol. (1985). 103, 1143-1149. https://doi.org/10.1152/japplphysiol.00293.2007
  22. Sjoberg, N. and Saint, D. A. 2011. A single 4 mg dose of nicotine decreases heart rate variability in healthy nonsmokers: implications for smoking cessation programs. Nicotine Tob. Res. 13, 369-372. https://doi.org/10.1093/ntr/ntr004
  23. Tarvainen, M. P., Niskanen, J. P., Lipponen, J. A., Ranta-Aho, P. O. and Karjalainen, P. A. 2014. Kubios HRV--heart rate variability analysis software. Comput. Methods Programs Biomed. 113, 210-220. https://doi.org/10.1016/j.cmpb.2013.07.024
  24. Task Force of the European Society of Cardiology. 1996. Heart rate variability: standards of measurement, physiological interpretation, and clinical use. Circulation 93, 1043-1065. https://doi.org/10.1161/01.CIR.93.5.1043
  25. Thayer, J. F., Yamamoto, S. S. and Brosschot, J. F. 2010. The relationship of autonomic imbalance, heart rate variability and cardiovascular disease risk factors. Int. J. Cardiol. 141, 122-131. https://doi.org/10.1016/j.ijcard.2009.09.543
  26. Yan, X. S. and D'Ruiz, C. 2015. Effects of using electronic cigarettes on nicotine delivery and cardiovascular function in comparison with regular cigarettes. Regul. Toxicol. Pharmacol. 71, 24-34. https://doi.org/10.1016/j.yrtph.2014.11.004
  27. Vansickel, A. R. and Eissenberg, T. 2012. Electronic cigarettes: effective nicotine delivery after acute administration. Nicotine Tob. Res. 15, 267-270.
  28. Voss, A., Schroeder, R., Heitmann, A., Peters, A. and Perz, S. 2015. Short-term heart rate variability--influence of gender and age in healthy subjects. PLoS. One 10, e0118308. https://doi.org/10.1371/journal.pone.0118308