DOI QR코드

DOI QR Code

Statistical Optimization of Culture Conditions of Probiotic Lactobacillus brevis SBB07 for Enhanced Cell Growth

프로바이오틱 Lactobacillus brevis SBB07의 균체량 증가를 위한 배양 조건 최적화

  • 정수지 ((재)발효미생물산업진흥원) ;
  • 양희종 ((재)발효미생물산업진흥원) ;
  • 류명선 ((재)발효미생물산업진흥원) ;
  • 서지원 ((재)발효미생물산업진흥원) ;
  • 정성엽 ((재)발효미생물산업진흥원) ;
  • 정도연 ((재)발효미생물산업진흥원)
  • Received : 2018.04.03
  • Accepted : 2018.04.23
  • Published : 2018.05.30

Abstract

We recently reported the potential probiotic properties of Lactobacillus brevis SBB07 isolated from blueberries. The present study investigates the effect of culture conditions such as temperature, initial pH, culture time, and medium constituent for industrial application. The ingredients of the medium to improve cell growth were selected by Plackett-Burman design (PBD) and central composite design (CCD) within a desirable range. The PBD was applied with 19 factors: seven carbon sources, six nitrogen sources, and six microelements. Protease peptone, corn steep powder (CSP), and yeast extract were found to be significant factors for the growth of SBB07. The CCD was then applied with three variables found from the PBD at five levels, and the optimum values were decided for the three variables: protease peptone, CSP, and yeast extract. In the case of the growth of SBB07, the proposed optimal media contained 2.0% protease peptone, 2.5% CSP, and 2.0% yeast extract, and the maximum dried-cell weight was predicted to be 2.93963 g/l. By the model verification, it was confirmed that the predicted and actual results are similar. Finally, the study investigated the effects of incubation temperature and initial pH at the optimized medium. It was confirmed that the dried-cell weight increased from $2.2933{\pm}0.0601g/l$ to $3.85{\pm}0.0265g/l$ when compared to the basal medium at $37^{\circ}C$ and initial pH 8.0. Establishing the optimal culture condition for SBB07 provides good potential for applications in probiotics and can serve as the foundation for the industrialization of materials.

본 연구는 전보의 블루베리로부터 분리하여 프로바이오틱스 특성이 우수한 Lactobacillus brevis SBB07의 기능성에 관한 연구에 이어, 산업적 적용을 위한 배양 시간, 배양용 배지의 성분 및 농도, 초기 pH, 배양 온도의 영향 등을 조사하였다. SBB07의 균체량 증진을 위한 배지 최적화를 수행하였고 이를 위해 통계적 방법인 Plackett-Burman design (PBD)와 central composite design (CCD)를 이용하여 배지의 성분 및 최적 농도를 확인하였다. PBD의 경우 탄소원 7종, 질소원 6종, 기타 미량 원소 6종을 이용 총 19가지 요소를 적용하였으며, 이 중 protease peptone, corn steep powder (CSP), yeast extract가 SBB07의 균성장에 중요 인자로 확인하였다. PBD에서 선정된 3가지 인자를 CCD에 적용하였으며 이를 통해 균체 성장을 위한 최적 농도로 protease peptone 2.0%, CSP 2.5%, yeast extract 2.0%로 이때 최대 균체량은 2.93963 g/l가 예측되었다. 모델의 검증 실험을 통해 예측 모델과 실제 결과가 동일함을 확인하였으며, 확립된 최적 배지를 사용하여 배양 온도 및 초기 pH에 따른 영향을 조사한 결과 기본배양조건과 비교하였을 때 $37^{\circ}C$, 초기 pH 8.0에서 균체량이 $2.2933{\pm}0.0601g/l$에서 $3.85{\pm}0.0265g/l$로 약 1.68배 증가함을 확인하였다. 따라서, 본 연구를 통해 프로바이오틱스 소재로서 우수한 기능성을 갖는 L. brevis SBB07의 배양 조건 확립을 통해 향후 소재의 산업화를 위한 기반을 확립하였다.

Keywords

References

  1. Al-Jumaily, E., Raheema, R. H. and Abdul-Ratha, H. A. 2014. Optimal conditions for acidocin production from Lactobacillus acidophilus isolate. World J. Pharm. Res. 3, 1773-1785.
  2. Bang, M., Lee, S. D. and Oh, S. 2012. Probiotics and intestinal health. Kor. J. Dairy Sci. Technol. 30, 139-143.
  3. Chang, C. E., Koo, J. R., So, J. S. and Yun, H. S. 2011. Production of viable Lactobacillus crispatus by using whey based medium. KSBB J. 26, 529-532. https://doi.org/10.7841/ksbbj.2011.26.6.529
  4. Chin, H. S., Shim, J. S., Kim, J. M., Yang, R. and Yoon, S. S. 2001. Detection and antibacterial activity of a bacteriocin produced by Lactobacillus plantarum. Food Sci. Biotechnol. 10, 461-467.
  5. Food and Agriculture Organisation, World Health Organisation. 2002. Guidelines for the evaluation of probiotics in food. FAO/WHO Guidelines.
  6. Ha, E. M. 2015. Growth rate and antimicrobial activity of Lactobacillus plantarum reacting with bacterial culture supernatant. Microbiol. Biotechnol. Lett. 43, 187-194. https://doi.org/10.4014/mbl.1505.05002
  7. Huang, Y. and Zheng, Y. 2010. The probiotic Lactobacillus acidophilus reduces cholesterol absorption through the downregulartion of Niemann-Pick C1-like 1 in Caco-2 cells. Br. J. Nutr. 103, 473-478. https://doi.org/10.1017/S0007114509991991
  8. Hwang, C. F., Chang, J. H., Houng, J. Y., Tsai, C. C., Lin, C. K. and Tsen, H. Y. 2012. Optimization of medium composition for improving biomass production of Lactobacillus plantarum Pi06 using the Taguchi array design and the Box-Behnken method. Biotechnol. Bioprocess Eng. 48, 337-342.
  9. Juarez Tomas, M. S., Ocana, V. S., Wiese, B. and Nader-Macias, M. E. 2003. Growth and lactic acid production by vaginal Lactobacillus acidophilus CRL 1259, and inhibition of uropathogenic Escherichia coli. J. Med. Microbiol. 52, 1117-1124. https://doi.org/10.1099/jmm.0.05155-0
  10. Kim, D. H., Dasagrandhi, C., Park, S. K., Eom, S. H., Huh, M. K., Mok, J. S. and Kim, Y. M. 2018. Optimization of gamma-aminobutyric acid production using sea tangle extract by lactic acid bacterial fermentation. LWT-Food Sci. Technol. 90, 636-642. https://doi.org/10.1016/j.lwt.2018.01.011
  11. Kim, J. K., Won, Y. B., Lee, K. M. and Koo, Y. M. 2009. Influence of organic, inorganic nitrogen sources and amino acids on the biosynthesis of coenzyme $Q_{10}$ by Agrobacterium tumefaciens mutant. KSBB J. 24, 75-79.
  12. Kimoto-Nira, H., Suzuki, S., Suganuma, H., Moriya, N. and Suzuki, C. 2015. Growth characteristics of Lactobacillus brevis KB290 in the presence of bile. Anaerobe 35, 96-101. https://doi.org/10.1016/j.anaerobe.2015.08.001
  13. Kim, Y. G., Toshihisa, O., Takuya, T., Akira, K., Koji, N., Teruo, Y., Nobuhiko, O. and Hirofumi, D. 2006. Probiotic Lactobacillus casei activates innate immunity via NF-kB and p38 MAP kinase signaling pathways. Microbes Infect. 8, 994-1005. https://doi.org/10.1016/j.micinf.2005.10.019
  14. Kim, Y. H., Choi, C. Y. and Chun, T. 2016. The preventive and therapeutic effects of probiotics in allergic diseases via immune modulation. J. Food Hyg. Saf. 31, 141-152. https://doi.org/10.13103/JFHS.2016.31.3.141
  15. Lee, K. E., Choi, U. H. and Ji, G. E. 1996. Effect of Kimchi intake on the composition of human large intestinal bacteria. Kor. J. Food Sci. Technol. 28, 981-986.
  16. Leroy, F. and De Vuyst, L. 1999. Temperature and pH conditions that prevail during fermentation of sausages are optimal for production of the antilisterial bacterial bacteriocin sakacin K. Appl. Environ. Microbiol. 65, 974-981.
  17. Lim, E. S. 2015. Optimal conditions and effects of prebiotics for growth and antimicrobial substances production of Lactobacillus brevis BK11. Kor. J. Microbiol. 51, 288-299. https://doi.org/10.7845/kjm.2015.5038
  18. Malin, M., Suomalainen, H., Saxelin, M. and Isolauri, E. 1996. Promotion of IgA immune response in patients with Crohn's Disease by oral bacteriotherapy with Lactobacillus GG. Ann. Nutr. Metab. 40, 137-145. https://doi.org/10.1159/000177907
  19. McCarthy, J., O'mahony, L., O'callaghan, L., Sheil, B., Vaughan, E. E., Fitzsimons, N. and Shanahan, F. 2003. Double blind, placebo controlled trial of two probiotic strains in interleukin 10 knockout mice and mechanistic link with cytokine balance. Gut 52, 975-980. https://doi.org/10.1136/gut.52.7.975
  20. Otero, M. C., Ocana, V. S. and Nadar-Macias, M. E. 2004. Bacterial surface characteristics applied to selection of probiotic microorganisms. Methods Mol. Biol. 268, 435-440.
  21. Parente, E. and Ricciardi, A. 1999. Production, recovery and purification of bacteriocins from lactic acid bacteria. Appl. Microbiol. Biotechnol. 52, 628-638. https://doi.org/10.1007/s002530051570
  22. Shin, E. H. 2002. Studies on growth characteristics of Lactobacillus brevis isolated from Kimchi-Optimization of nutrient composition in Sourdough media. Kor. J. Food Nutr. 15, 215-219.
  23. Wang, K. Y., Li, S. N., Liu, C. S., Perng, D. S., Su, Y. C., Wu, D. C., Jan, C. M., Lai, C. H., Wang, T. N. and Wang, W. M. 2004. Effects of ingesting Lactobacillus-and Bifidobacterium-containing yogurt in subjects with colonized Helicobacter pylori. Am. J. Clin. Nutr. 80, 737-741.
  24. Wasilewski, A., Zielinska, M., Storr, M. and Fichna, J. 2015. Beneficial effects of probiotics, prebiotics, synbiotics and psychobiotics in inflammatory bowel disease. Inflamm. Bowel. Dis. 21, 1674-1682. https://doi.org/10.1097/MIB.0000000000000364
  25. Yang, H. J., Jeong, S. J., Jeong, S. Y., Ryu, M. S. and Jeong, D. Y. 2018. Isolation of biogenic amine non-producing Lactobacillus brevis SBB07 and its potential probiotic properties. J. Life Sci. 28, 68-77.
  26. Yoon, S. J., Shin, W. S., Chun, G. T. and Jeong, Y. S. 2007. Optimization of production medium by response surface method and development of fermentation condition for Monascus polosus culture. KSBB J. 22, 288-296.
  27. Yu, L., Lei, T., Ren, X., Pei, X. and Feng, Y. 2008. Response surface optimization of l-(+)-lactic acid production using corn steep liquor as an alternative nitrogen source by Lactobacillus rhamnosus CGMCC 1466. Biochem. Eng. J. 39, 496-502. https://doi.org/10.1016/j.bej.2007.11.008