DOI QR코드

DOI QR Code

노각나무 잎에서 분리된 플라보노이드에 의한 대식세포에서 산화질소 생성 억제효과

Inhibitory Effects of Flavonoids Isolated from the Leaves of Stewartia koreana on Nitric-oxide Production in LPS-stimulated RAW 264.7 Cells

  • 이승수 (경희대학교 피부생명공학센터) ;
  • 방면호 (경희대학교 피부생명공학센터) ;
  • 박세호 (계명대학교 자연과학연구소) ;
  • 정대균 (경희대학교 피부생명공학센터) ;
  • 양선아 (계명대학교 식품가공학전공)
  • Lee, Seung-Su (Skin Biotechnology Center, Kyung Hee University) ;
  • Bang, Myun-Ho (Skin Biotechnology Center, Kyung Hee University) ;
  • Park, Se-Ho (Institute of Natural Science, Keimyung University) ;
  • Chung, Dae-kyun (Skin Biotechnology Center, Kyung Hee University) ;
  • Yang, Seun-Ah (Department of Food Science and Technology, Keimyung University)
  • 투고 : 2018.02.22
  • 심사 : 2018.03.13
  • 발행 : 2018.05.30

초록

노각나무(Stewartia koreana) 잎 에틸아세테이트 분획으로부터 quercetin (1), quercitrin (2), hyperin (3), quercetin-3-O-(6"-O-galloyl)-${\beta}$-D-galactopyranoside (4), kaempferol-3-o-[2",6"-di-o-(trans-p-coumaroyl)]-${\beta}$-D-glucopyranoside (5)의 5종의 플라보노이드를 분리하였으며, 이들 5종 성분의 염증 반응에 대한 활성을 분석하기 위하여 LPS를 처리한 대식세포에서 산화질소(NO) 생성 억제활성을 측정하였다. 이들 5종 성분 중 compound 4, 5는 노각나무에서 처음으로 분리된 것으로 항염증 활성에 대한 보고도 없다. 분광분석법으로 확인된 노각나무 잎 유래 성분들은 LPS 처리한 대식세포의 NO 생성을 유의적으로 저해하였으며, 특히 kaempferol-3-o-[2",6"-di-o-(transp-coumaroyl)]-${\beta}$-D-glucopyranoside (5)는 가장 강한 억제효과(17.17%, 5.0%, 3.92%, 6.32% and 63.35% inhibition of compound 1, 2, 3, 4 and 5 at $10{\mu}g/ml$)를 나타냈다. 또한, 이러한 NO 생성 억제효과는 inducible nitric oxide synthase(iNOS) 단백질 발현 억제를 통한 것으로 나타났다. 따라서, 본 연구에서 새로 분리된 플라보놀인 kaempferol-3-o-[2",6"-di-o-(trans-p-coumaroyl)]-${\beta}$-D-glucopyranoside (5)는 노각나무 잎의 항염증 활성을 나타내는 주요 물질로 사료된다.

Five phenolic compounds were isolated from the ethyl acetate fraction of leaves from Stewartia koreana, and their nitric-oxide (NO) inhibitory activities were measured to identify the major active constituents responsible for the efficacy of the extract against inflammatory reactions. These five compounds were quercetin (1), quercitrin (2), hyperin (3), quercetin-3-O-(6"-O-galloyl)-${\beta}$-D-galactopyranoside (4), and kaempferol 3-O-[2",6"-di-O-(trans-p-coumaroyl)]-${\beta}$-D-glucopyranoside (5). Among the separated compounds in the EtOAc fraction, compounds 4 and 5 were isolated for the first time, and no study has yet reported their anti-inflammatory effects. The compounds were identified by spectroscopic analysis, and the isolated compounds showed significant NO inhibitory effects in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. Compound 5 showed the most potent inhibitory effect (63.35% inhibition) against LPS-induced NO production compared to that of compound 1 (17.17%), compound 2 (5.0%), compound 3 (3.92%), and compound 4 (6.32%) at $10{\mu}g/ml$ concentration. NO production was inhibited by suppressing the protein expression of inducible nitric-oxide synthase in LPS-stimulated RAW 264.7 macrophages. These results indicate that kaempferol 3-O-[2",6"-di-O-(trans-p-coumaroyl)]-${\beta}$-D-glucopyranoside might be the major active compound responsible for the anti-inflammatory effects of S. koreana.

키워드

참고문헌

  1. Alderton, W. K., Cooper, C. E. and Knowles, R. G. 2001. Nitric oxide synthases: structure, function and inhibition. Biochem. J. 357, 593-615. https://doi.org/10.1042/bj3570593
  2. Garcia-Mediavilla, V., Crespo, I., Collado, P. S., Esteller, A., Sanchez-Campos, S., Tunon, M. J. and Gonzalez-Gallego, J. 2007. The anti-inflammatory flavones quercetin and kaempferol cause inhibition of inducible nitric oxide synthase, cuclooxygenase-2 and reactive C-protein, and down-regulation of the nuclear factor kappaB pathway in Chang liver cells. Eur. J. Pharmacol. 557, 221-229. https://doi.org/10.1016/j.ejphar.2006.11.014
  3. Hamalainen, M., Nieminen, R., Vuorela, P., Heinonen, M. and Moilanen, E. 2007. Anti-inflammatory effects of flavonoids: genistein, kaempferol, quercetin, and daidzein inhibit STAT-1 and NF-kB activations, whereas flavones, isorhamnetin, naringenin, and pelargonidin inhibit only NF-kB activation along with their inhibitory effect on iNOS expression and NO production in activated macrophages. Mediators Inflamm. 2007, 45673.
  4. Ha, S., Choi, Y., Jeon, Y., Kang, S., Zee, O. and Kwak, J. 2013. Phenolic compounds from the flower of Stewartia pseudo-camellia and their inhibitory effects on the release of ${\beta}$-hexosaminidase in RBL-2H3 cells. Planta Med. 79, PJ20.
  5. Hossen, M. J., Jeon, S. H., Kim, S. C., Kim, J. H., Jeong, D., Sung, N. Y., Yang, S., Baek, K. S., Kim, J. H., Yoon, D. H., Song, W. O., Yoon, K. D., Cho, S. H., Lee, S., Kim, J. H. and Cho, J. Y. 2015. In vitro and in vivo anti-inflammatory activity of Phyllanthus acidus methanolic extract. J. Ethnophamacol. 168, 217-228. https://doi.org/10.1016/j.jep.2015.03.043
  6. Jeong, R. H., Lee, D. Y., Cho, J. G., Lee, S. M., Kang, H. C., Seo, W. D., Kang, H. W., Kim, J. Y. and Baek, N. I. 2011. A new flavonolignan from the aerial parts of Oryza sativa L. inhibits nitric oxide production in RAW 264.7 macrophage cells. J. Appl. Biol. Chem. 54, 865-870.
  7. Kim, M. H., Jang, J. H., Oh, M. H., Heo, J. H. and Lee, M. W. 2014. The comparison of DPPH-scavenging capacity and anti-inflammatory effects of phenolic compounds isolated from the stem of Stewartia koreana Nakai. Nat. Prod. Res. 28, 1409-1412. https://doi.org/10.1080/14786419.2014.905560
  8. Kim, S. K., Kim, H. J., Choi, S. E., Park, K. H., Choi, H. K. and Lee, M. W. 2008. Anti-oxidative and inhibitory activities on nitric oxide (NO) and prostaglandin E2 (COX-2) production of flavonoids from seeds of Prunus tomentosa Thunberg. Arch. Pharm. Res. 31, 424-428. https://doi.org/10.1007/s12272-001-1174-9
  9. Lee, J. M., Kim, H. M., Lee, S., Han, S., Cho, S. H. and Lee, S. 2010. Determination of hyperin in the fruits of Acanthopanax species by high performance liquid chromatography. Nat. Prod. Sci. 16, 39-42.
  10. Lee, T. H., Kwak, H. B., Kim, H. H., Lee, Z. H., Chung, D. K., Baek, N. I. and Kim, J. 2007. Methanol extracts of Stewartia koreana inhibit cycloocygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) gene expression by blocking NF-kappaB transactivation in LPS-activated RAW 264.7 cells. Mol. Cells 23, 398-404.
  11. Lee, T. H., Lee, G. W., Kim, C. W., Bang, M. H., Beak, N. I., Kim, S. H., Chung, D. H. and Kim, J. Y. 2010. Stewartia koreana extract stimulates proliferation and migration of human endothelial cells and induces neovasculization in vivo. Phytother. Res. 24, 20-25. https://doi.org/10.1002/ptr.2851
  12. Lee, T. H., Lee, G. W., Park, K. H., Mohamed, M. A., Bang, M. H., Baek, Y. S., Son, Y., Chung, D. K., Baek, N. I. and Kim, J. 2014. The stimulatory effects of Stewartia koreana extract on the proliferation and migration of fibroblasts and the wound healing activity of the extract in mice. Int. J. Mol. Med. 34, 145-152. https://doi.org/10.3892/ijmm.2014.1753
  13. Lee, T. H., Lee, S. M., Lee, D. Y., Son, Y., Chung, D. K., Baek, N. I. and Kim, J. 2011. A glycosidic spinasterol from Koreana stewartia promotes procollagen production and inhibits matrix metalloproteinase-1 expression in UVB-irradiated human dermal fibroblasts. Biol. Pharm. Bull. 34, 768-773. https://doi.org/10.1248/bpb.34.768
  14. Mosmann, T. 1985. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotocixity assay. J. Immunol. Methods 65, 55-63.
  15. Park, C. K., Kim, H. J., Kwak, H. B., Lee, T. H., Bang, M. H., Kim, C. M., Lee, Y., Chung, D. K., Baek, N. I., Kim, J., Lee, Z. H. and Kim, H. H. 2007. Inhibitory effects of Stewartia koreana on osteoclast differentiation and bone resorption. Int. Immunopharmacol. 7, 1507-1516. https://doi.org/10.1016/j.intimp.2007.07.016
  16. Roh, H. J., Noh, H. J., Na, C. S., Kim, C. S., Kim, K. H., Hong, C. Y. and Lee, K. R. 2015. Phenolic compounds from the leaves of Stewartia pseudocamellia Maxim and their whitening activities. Biomol. Ther. 23, 283-289. https://doi.org/10.4062/biomolther.2014.140
  17. Statti, G. A., Conforti, F., Menichini, F., Marrelli, M., Gangale, C., Tundis, R., Loizzo, M. R., Bonesi, M. and Menichini, F. 2011. Protective effect of Hypericum calabricum Sprengel on oxidative damage and its inhibition of nitric oxide in lipopolysaccharide-stimulated RAW264.7 macrophages. Biol. Res. 44, 213-218. https://doi.org/10.4067/S0716-97602011000300001
  18. Tracey, K. J. and Cerami, A. 1993. Tumor necrosis factor, other cytokines and disease. Annu. Rev. Cell Biol. 9, 317-343. https://doi.org/10.1146/annurev.cb.09.110193.001533
  19. Yamashita, N., Etoh, H., Sakata, K., Yahi, A., Ina, H. and Ina, K. 1989. An acylated kaempferol glucoside isolated from Quercus dentate as a repellent against the blue mussel Mytilus edulis. Agr. Biol. Chem. 53, 1383-1385.
  20. Yang, Z. G., Jia, L. N., Shen, Y., Ohmura, A. and Kitanaka, S. 2011. Inhibitory effects of constituents from Euphorbia lunulata on differentiation of 3T3-L1 cells and nitric oxide production in RAW264.7 cells. Molecules 16, 8305-8318. https://doi.org/10.3390/molecules16108305
  21. Zhang, Z., Li, S., Ownby, S., Wang, P., Yuan, W., Zhang, W. and Scott Beasley, R. 2008. Phenolic compounds and rare polyhydroxylated triterpenoid saponins from Eryngium yuccifolium. Phytochemistry 69, 2070-2080. https://doi.org/10.1016/j.phytochem.2008.03.020
  22. Zhou, Y. J., Xu, S. X., Che, Q. M. and Sun, Q. S. 2001. Flavonoids from the leaves of Quercus dentate. Indian J. Chem. 40B, 394-398.