DOI QR코드

DOI QR Code

Bandwidth-Improved Design of Shielded Printed Spiral Coil Probes for Radio-Frequency Interference Measurement

무선주파수 간섭 측정용 차폐된 Printed Spiral Coil(PSC) 프로브의 대역폭 개선 설계

  • Kim, Kyungmin (Department of Electronics and Communications Engineering, Kwangwoon University) ;
  • Song, Eakhwan (Department of Electronics and Communications Engineering, Kwangwoon University)
  • 김경민 (광운대학교 전자통신공학과) ;
  • 송익환 (광운대학교 전자통신공학과)
  • Received : 2018.02.21
  • Accepted : 2018.04.11
  • Published : 2018.05.31

Abstract

Herein, electromagnetic shielding structures to reduce the external noise coupling to printed spiral coils (PSCs) and a design method for improving the bandwidth of shielded PSCs have been proposed. It has been demonstrated that the bandwidth of shielded PSCs is limited due to the parasitic capacitance between the coils and the shielding structures and is confirmed by the transfer function simulation of the shielded PSCs with a transmission line as the radio-frequency interference noise source. A design method for the bandwidth improvement of the shielded PSCs has been proposed based on the equivalent circuit model analysis and the case studies depending on PSC designs with a three-dimensional field simulation. With the design method, an optimized shielded PSC design has been presented and successfully confirmed by experimental verification in that the optimized design results in a significant bandwidth improvement.

본 논문에서는 기존 단품 Printed Spiral Coil(PSC)의 외부 노이즈 결합의 저감을 위한 차폐 구조와 차폐된 PSC의 대역폭 개선을 위한 설계법이 제안되었다. 차폐 구조가 적용될 경우, PSC와 차폐 구조 사이의 기생 커패시턴스에 의한 공진현상으로 인해 단품 PSC 대비 전달함수 대역폭에 한계를 가지게 되며, Radio-Frequency Interference(RFI) 노이즈 원으로 가정된 $50{\Omega}$ 마이크로스트립 라인과의 전달함수 시뮬레이션을 통해 이를 확인하였다. 차폐된 PSC의 등가회로 모델을 통해 대역폭을 개선할 수 있는 방안을 제시하고, 3D field simulation을 이용한 사례 연구를 통해 방안의 타당성을 검증하였다. 제시된 방안을 기반으로 차폐 구조가 적용된 PSC 설계의 최적화를 수행하였으며, 측정 검증을 통해 전달함수가 보존되는 범위 내에서 전달함수의 대역폭이 개선됨을 확인하였다.

Keywords

References

  1. S. Grivet-Talocia, M. Bandinu, F. Canavero, I. Kelander, and P. Kotiranta, "Fast assessment of antenna-PCB coupling in mobile devices: A macro-modeling approach," in 2009 20th International Zurich Symposium on Electromagnetic Compatibility, Zurich, 2009, pp. 193-196.
  2. H. H. Chuang, G. H. Li, E. Song, H. H. Park, H. T. Jang, and H. B. Park, et al., "A magnetic-field resonant probe with enhanced sensitivity for RF interference applications," IEEE Transactions on Electromagnetic Compatibility, vol. 55, no. 6, pp. 991-998, Dec. 2013. https://doi.org/10.1109/TEMC.2013.2248011
  3. 김경민, 송익환, "무선주파수 간섭 측정을 위한 printed spiral coil(PSC) 프로브의 고주파 모델링," 한국전자파학회논문지, 29(1), pp. 10-19, 2018년 1월. https://doi.org/10.5515/KJKIEES.2018.29.1.10
  4. Y. Cheng, Y. Shu, "A new analytical calculation of the mutual inductance of the coaxial spiral rectangular coils," IEEE Transactions on Magnetics, vol. 50, no. 4, pp. 1-6, Apr. 2014.
  5. K. Kim, H. Oh, and E. Song, "Modeling of printed spiral coils based on conformal mapping method with fringing capacitance effects," in 2017 Asia-Pacific International Symposium on Electromagnetic Compatibility(APEMC), Jun. 2017, p. 362.
  6. S. S. Mohan, M. del Mar Hershenson, S. P. Boyd, and T. H. Lee, "Simple accurate expressions for planar spiral inductances," IEEE Journal of Solid-State Circuits, vol. 34, no. 10, pp. 1419-1424, Oct. 1999. https://doi.org/10.1109/4.792620