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Applying a modified AUC to gene ranking
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Abstract

High-throughput technologies enable the simultaneous evaluation of thousands of genes that could discrimi-
nate different subclasses of complex diseases. Ranking genes according to differential expression is an important
screening step for follow-up analysis. Many statistical measures have been proposed for this purpose. A good
ranked list should provide a stable rank (at least for top-ranked gene), and the top ranked genes should have a high
power in differentiating different disease status. However, there is a lack of emphasis in the literature on ranking
genes based on these two criteria simultaneously. To achieve the above two criteria simultaneously, we proposed
to apply a previously reported metric, the modified area under the receiver operating characteristic cure, to gene
ranking. The proposed ranking method is found to be promising in leading to a stable ranking list and good
prediction performances of top ranked genes. The findings are illustrated through studies on both synthesized
data and real microarray gene expression data. The proposed method is recommended for ranking genes or other
biomarkers for high-dimensional omics studies.
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1. Introduction

High-throughput studies simultaneously provide a measurement of thousands of genes; however,
many of them are not important for a specific study. Hence, how to select informative ones or to
provide a rank of them for further studies is an important problem in many biomedical studies. Along
with detecting differentially expressed genes (DEG), a major interest in many genetic studies (Ben-
jamini and Hochberg, 1995; Storey, 2003), ranking genes based on some relevant metric was also
helpful to form relevant and integrated gene candidates for further analysis (Noma and Matsui, 2013).
Many ranking methods have been proposed in the literature, these methods range from simple meth-
ods such as fold change, classical #-statistics, ad hoc modification of ordinary #-statistics (Tusher et
al., 2001) and Efron’s 90% rule (Efron et al., 2001) to complex hierarchical Bayes model-based ap-
proaches (Newton et al., 2004), such as the moderated #-statistics (Smyth, 2004; Noma et al., 2010;
Noma and Matsui, 2013). There are some good provided found in Boulesteix and Slawski (2009) and
Jeffery et al. (2006).

To evaluate a ranked gene list, the prediction performance of the top genes is a commonly used
criterion (Furlanello er al., 2003; Jeffery et al., 2006). The selection probability, which quantifies
the stability of the rank of a gene in the list gained more notice Pepe et al. (2003), Boulesteix and
Slawski (2009). However, to our knowledge, there is inadequate emphasis on using these two criteria
simultaneously to evaluate a ranking method.
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The receiver operating characteristic (ROC) curve directly evaluates the differential ability of a
gene as well as provides complete information about the relation between specificity and sensitivity
that enable its utility in gene ranking Pepe et al. (2003). Two popular summary indexes of the ROC,
the area under the ROC curve (AUC) and the partial area under the ROC curve (pAUC), have been
used exclusively for such a purpose. Joober et al. (1999) and De Alava et al. (2000) used AUC to
compare the diagnostic performance of different genes in clinical practice. Pepe ef al. (2003) used
pAUC given a prescribed specificity range for ranking genes. Both AUC and pAUC are rank-based
statistics that do not incorporate differential magnitude of gene expressions and may lack the power to
select some important genes. The modified AUC (mAUC), proposed in Yu et al. (2014), was shown
to take advantage of both AUC and pAUC; therefore, we propose to use mAUC for gene ranking. We
have demonstrated its properties using the two criteria mentioned above.

In Section 2, we reviewed the definition of AUC, pAUC, and mAUC, and proposed to rank genes
by mAUC. We also gave the definitions of the two ranking evaluation measures. We then demon-
strated our method using simulation study in Section 3 and two real microarray examples in Section
4. The Hierarchical Bayes method was popularly used in gene expression analysis; therefore, in our
numerical studies, we also compare our method to a frequently used Hierarchical Bayes statistic —
the moderated ¢-statistics (modT) (Smyth ef al., 2004). A discussion and conclusion are presented in
Section 5.

2. Methods

2.1. mAUC for gene ranking
2.1.1. Definition of AUC, pAUC, and mAUC: a review

Here, we review the three ROC curve based summary indexes: AUC, pAUC, and mAUC, and pro-
pose applying mAUC to gene ranking. Let n and m be sample sizes of diseased and non-diseased
subjects, respectively. Suppose there are p genes under study. Let ¥y = (Yig, ..., Y,)" and X; =
X1k .-+, X,)T denote the random scores of gene g; for the diseased and non-diseased subjects,
respectively for k = 1,...,p. Let c be the fixed threshold. Then sensitivity and specificity of
gene g is defined as sex(c) = Pr(¥y > ¢) and 1 — sp,(c) = Pr(X; > c), respectively. The cor-
responding ROC curve is a plot of {(1 — sp,(c),sex(c)) : =0 < ¢ < oo}, and the AUC of g; is
AUC; = fol sek(spk’l(l — 1))dt, which is equal to P(Y; > X;) (Bamber, 1975). It follows that a
pAUC, with a pre-fixed ¢ € (0, 1) is defined as the integration of the ROC curve over a specific range
PAUC (%) = foto sek(sp;1(1 —1)dt), 0 < tp < 1. This implies that the perfect pAUC,(t) is #p. In
practice, we are interested in the pAUC with high specificity; that is, #; is usually small.
The mAUC for gene g; proposed in Yu et al. (2014) is defined as:

mAUC, =Pr(¥y — X, > 6)+ (1 - )Pr(0 < Y, — X; <)) (2.1)
with some prefixed 0 < A < 1 and § > 0. It can be rewritten as a weighted average of two AUCs:
mAUC;, = (1 — ) Pr(Yy > X)) + APr(Y > X + 9), 2.2)

where the first part is the original AUC of gene g, and the second part requires a larger difference
between the diseased and non-diseased subjects. That is, for genes with the same AUCs, the larger
the mAUC, the farther the separation between the two groups. From Equation (2.2), the estimate of
mAUC can be obtained using the two conventional estimates of AUCs.
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Note that, even though the definition of mAUC comes from a ROC curve, as in Equation (2.1),
it is not necessarily based on the ROC curve. It can be treated as the weighted probabilities of two
events, {¥Y; — X > ¢} and {0 < Y — X < 6}; as A increases, the importance of the event {Y; — X > d}
increases; therefore, the larger difference between the two groups is emphasized more.

Define an empirical estimate of AUC as:

— i 2 (Y, X )
AUC, = 1 2j=1 J ’
nm
where
1, y > X,
Uy, x) =4 0.5, y=2X,
0, y <X

Then an empirical estimate of mAUC is

i1 2 (= DY (Yie, Xji) + (Y, Xjie + 0)

nm

mAUC; =

2.3)

Based on Yu er al. (2014, 2015), a heuristic choice of ¢ is zj_o/20%, Where z, is the @ quantile
of a standard normal distribution, and o is the standard deviation of X;. From Equation (2.2), A
determines how much weight is put on the original AUC. In this work, we fix ¢ and vary A for
comparison. More details on mAUC can be found in Yu et al. (2014, 2015).

2.1.2. Parameter selection for mAUC in gene ranking

Generally, o can be estimated from the sample variance. However, to obtain an accurate estimation
of variance for each gene, a large number of samples is required, which is difficult for many studies.
For example, it’s hard to collect many patient samples for some complex diseases such as cancer.
Therefore, we propose to set § = max(o, 5), where & is the pooled sample standard deviation from
all genes, that is,

_\2
p m+n 7.
2 j=1 &k=1 (ij ZJ)

nm+m-1)p

)

where Z; = X for 1 < k < m, Z; = Yyj fork > (m + 1), and Z; = Y771 Zy;/(n + m). The idea of
borrowing information from other genes is commonly used in estimating variance of genes such as
Cui and Churchill (2003), Cui et al. (2005), Smyth (2004). Also, the term o7 is pre-specified as the
standard deviation of the gene with the largest AUC value. This will prevent § from being too small
in case the pooled variance is too small when a large portion of genes are non-differentially expressed
in practice.

2.2. Evaluation metrics

In this section, we introduced two commonly used metrics that evaluate a ranked gene list in terms of
its stability and prediction power, respectively.
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2.2.1. Selection probability

A stable ranked gene list is usually preferred in clinical and genomic applications. However, the ranks
of genes may vary when some genes change in their observations. To measure the ranking stability,
Pepe et al. (2003) utilized a selection probability that quantifies the degree of confidence in choosing
the i”* gene among the top K:

P,(K) = Pr{the gene g is ranked in the top K} = Pr{Rank(g) < K}.

Pepe et al. (2003) also proposed an estimate of P,(k) using the bootstrap method. Some other types
of alternative measures to evaluate the stability of the ranked gene list are summarized in Boulesteix
and Slawski (2009).

We propose using the following averaged selection probability (ASP) of the top K genes as a
metric for the stability of a ranking method:

1K=l Pg[(K)

ASP(K) = <

2.4)
Pepe et al. (2003) proposed selection probability for a single gene, while ASP was the averaged se-
lection probability proposed for the top K genes. ASP is a new metric; however, it is conceptually not
because Pepe er al. (2003) also mentioned that the select probability for all top genes are informative
for the stability of the ranked list. ASP is conceptually natural and simple; suppose the data was
slightly perturbed. The selection probability for a single gene in the top list quantifies how often the
gene is still in the top list after perturbation; while ASP quantifies the average frequency of the top
ranked genes staying in the top after perturbation.

2.2.2. Relative classifier information metric

Another important characteristic of a gene list is its prediction accuracy as a classifier. The classifier
could be constructed using some well-known supervised learning algorithms. Many studies present
the success of a classifier by the accuracy of predicting responses of the test set, they may not work
well for the imbalanced responses, where the ratio of sizes of two responses is far away from 1. Thus,
we evaluate the prediction efficiency by the relative classifier information metric (RCI) defined as in
Sindhwani et al. (2001).
For a given classifier’s performance on a test set, the RCI measure is defined below:

Let g;; be the number of times that an input class (I or true class) for a subject with actual label C;
is predicted as C;. For a two-class problem, there are only two labels, C; and Cy; i.e.,i = 1,2, and
j = 1,2. The probability that the input class I has a true label C; is given by

PUeC)=22

The Shannon’s entropy of the data set before classification can be used to measure the uncertainty
associated with a test set before a classification model has been applied and is calculated as

Hy(l) = Z —P(I € C)log P(I € C)).

i
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The probability that the output class (O or predicted class) for a subject is predicted to belong to class
C j is

POeC) =2
i jdij
The probability that a sample labeled as C; by the classifier belongs to C; is
PUECIOEC) =py=—21_
2i4ij

Therefore, the uncertainty for a sample after classification is performed is
H, (110 € Cj) = Y =pjjlog pij,
i

and the overall uncertainty after classification is

H,(110) = > P(O € CH, (110 € C)).
J

The reduction in uncertainty due to the classifier is used as the RCI score:
RCI score = H; — H,.

The RCI metric is an entropy-based measure that corrects for differences in prior probability due to
unequal class sizes. By taking into account this prior probability, a better measure of classification
is obtained (Sindhwani et al., 2001). A higher RCI score indicates that greater reduction of the
uncertainty for the test set is achieved after implementing the classifier. A detailed definition and
more discussion can be found in Sindhwani et al. (2001) and Jeffery et al. (2006).

In this paper, we have built classifiers based on ranked gene lists through four supervised clas-
sification methods: support vector machines with linear kernel (SVMI) and radial kernel (SVMr),
respectively, naive Bayes (NB) classification, and K-nearest neighbors (KNN). We used R package
class for the implementation of KNN and package ¢1071 for the others.

2.3. A highly related practical question: how many top genes to use?

In practice, choosing the number of genes to select is a key step after gene ranking. A possible way is
to optimize ASP (optASP) across all possible Ks. We choose top d genes by

d =arg max ASP(K). 2.5)
Ke{l,...,p}

.....

To get a sparse model, we propose using the following opfASP criterion

d=arg min {ASP(K) > MASP - SASP}, (2.6)

,,,,, p}

where MASP and sASP stand for the maximum and standard deviation of ASPs, respectively.
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Figure 1: The ROC curves for genes of types A and B in simulation studies. ROC = receiver operating charac-
teristic.

Table 1: Selection probabilities in simulation studies

. m=n=10 m=n=20
Scenario Method PA20) Pp20) PA20) Pp20)
auc 0.568 (0.136) 0.332 (0.143) 0.896 (0.092) 0.634 (0.135)
pauc 0.275 (0.129) 0.651 (0.145) 0.493 (0.144) 0.954 (0.064)
modt 0.515 (0.134) 0.627 (0.146) 0.847 (0.131) 0.862 (0.129)
p=0 mauc0.25 0.621 (0.134) 0.553 (0.151) 0.890 (0.137) 0.804 (0.147)
mauc0.5 0.586 (0.138) 0.662 (0.147) 0.841 (0.183) 0.865 (0.187)
mauc0.75 0.535 (0.142) 0.737 (0.142) 0.804 (0.188) 0.906 (0.194)
maucl.0 0.479 (0.152) 0.786 (0.134) 0.769 (0.163) 0.944 (0.159)
auc 0.573 (0.306) 0.306 (0.275) 0.876 (0.214) 0.607 (0.279)
pauc 0.272 (0.231) 0.640 (0.259) 0.494 (0.246) 0.959 (0.099)
modt 0.512 (0.302) 0.609 (0.308) 0.731 (0.332) 0.754 (0.335)
p=0.6 mauc(.25 0.626 (0.299) 0.515 (0.312) 0.798 (0.321) 0.715 (0.311)
mauc0.5 0.591 (0.300) 0.617 (0.300) 0.723 (0.354) 0.741 (0.356)
mauc0.75 0.544 (0.302) 0.700 (0.274) 0.657 (0.365) 0.748 (0.385)
maucl.0 0.493 (0.296) 0.757 (0.245) 0.623 (0.351) 0.785 (0.378)

3. Simulation study

In simulation studies, we present selection probabilities of informative genes and RCI scores for the
top selected genes, using AUC, pAUC, modT, and mAUC as the ranking methods, where the upper
bound of FPR to define pAUC is 0.1. Different As are used for mAUC; for example, mauc0.5 stands
for mAUC with 4 = 0.5. For each ranked gene list, top k genes were used to construct the classifier,
k=1,...,20. For each k, we average the RCI scores over the four classifiers, i.e., SVMI, SVMr, NB,
and KNN.

We generate 2,000 genes, of which 99% are non-informative, in the sense that genes from diseased
and non-diseased subjects follow the same distribution, say, N(0, 1). The informative genes have two
types: 10 genes generated from type A following N(1, 1) for diseased subjects and another 10 genes
simulated from type B following N(1.25,2?) for diseased subjects. For both types, non-diseased
subjects follow the standard normal distribution. Figure 1 shows the ROC curves for genes with types
A and B. The 2m and 2n are sample sizes of the non-diseased and diseased groups, respectively. Note
that genes of type B have larger mean differences between diseased and non-diseased groups than



Applying a modified AUC to gene ranking 313

genes of type A, and genes of type B have larger variance, too.

We consider two kinds of data structure, in which different genes are correlated or uncorrelated.
In the former structure, all the informative genes with the same type are correlated with the correlation
coefficient 0.6. Note that genes from type A have larger AUCs, while genes from type B have higher
partial ROC curves when FPR is relatively low. We generate n and m samples for disease and non-
diseased groups, respectively, as the training set. Other independent n and m samples are generated in
the same way as the test set, upon which the averaged RCI scores are computed over 500 repetitions.

Table 1 summarizes the proportions of the informative genes selected, averaged across 500 repe-
titions for both of correlated and uncorrelated genes. P4(20) and Pg(20) are probabilities for genes
of type A and genes of type B being ranked in the top 20, respectively. In simulation studies, P4(20)
(Pp(20)) is estimated as the average fraction of genes of type A (type B) ranked in top 20 in the test
set. AUC is less effective to select type B genes, while pAUC lacks the power to select type A genes.
The mAUC and modT methods show better performances than AUC and pAUC methods, in the sense
of achieving good balance between selecting type A genes and selecting type B genes. For mAUC
approaches, the selection probability of type B genes increases as A increases, while the selection
probability of type A genes decreases. These findings look natural since AUC only considers a gene’s
global discriminant performance, while pAUC considers the area with low FPR but high TPR. Also,
modT has a good balance of selecting both types of genes. Performance of mAUC is good because
mAUC keeps the information on the entire ROC curve as well as assigns more importance on the high
specificity range.

In Figure 2, pAUC and AUC present weaker prediction performances than other methods. When
A is greater than 0.5, mAUC consistently performs better than others under a different number of top
genes, different sample sizes and different correlation structures. Combined with the results from se-
lection probabilities, this implies that type B genes are more predictive than type A genes. However,
it fails to have a good prediction performance even though the pAUC approach shows high selec-
tion probabilities for type B genes. The reason for this may be because pAUC ignores type A genes
too much despite type A genes playing roles to some degree in prediction. The ranking method that
achieves good balance between selecting the two types of genes will have good prediction perfor-
mance; once some level of balance is obtained, selecting more genes of type B is better.

Findings under the correlated scenario are similar to the uncorrelated genes. When the sample size
is as small as 10 for each group, the selection probability for each type of genes under the correlated
scenario is close to the uncorrelated cases; when the sample size increases, the selection probability
under the correlated scenario is lower than that under the uncorrelated scenario (Table 1). The cu-
mulative RCI scores for correlated cases are smaller than those for uncorrelated cases (Figure 2). We
also provide the average accuracy of each method in Figure 3 similar findings are observed between
different methods found in Figure 2.

4. Real examples

In this section, we use two microarray data sets on colon and lung cancers to demonstrate our method.
We randomly divide data into training and test sets; half of the sample comprises the training set and
the left half comprises the test set. Gene ranking and training of classifiers were performed on the
training sets only. The classification performance of each gene list is evaluated by the RCI score on
the test set. The cumulative RCI scores versus selected the top k genes are displayed in Figure 4(a)
for k = 1,...,50. RCI scores are averaged over the four classification methods for the test set. This
procedure is repeated S00 times while selecting a new test set each time.
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Figure 2: The average RCI score of each ranked gene list in simulation studies: m = n = 10, p = 0 (top left);
m=n =20, p =0 (top right); m = n = 10, p = 0.6 (bottom left); m = n = 20, p = 0.6 (bottom right). RCI =
relative classifier information.

4.1. Example 1: colon cancer data

Expression levels of 40 tumor and 22 normal colon tissues for 2,000 human genes with the highest
minimal intensity were measured from 62 subjects (Alon et al., 1999). The data can be downloaded
from http://microarray.princeton.edu/oncology/ or from the colonCA package at http://www.biocondu
ctor.org. We preprocessed the data by logarithm transformation and quantile normalization.

In Figure 4(a), mAUC with 2 = 1.0 almost uniformly outperforms others ranged from the top 1
gene selected to the top 50 genes selected. AUC and pAUC approaches cannot achieve good RCI
scores as in the simulation study; the modT approach is better than AUC and pAUC, but less powerful
than mAUC with 4 > 0.5. Note that mAUC with A equal to 0 (AUC) is not good in the sense of RCI
scores. This fact indicates that it is not a good idea to set A to be extremely small.

Figure 4(b) shows the plot of ASP when a different number of top genes are selected. The mAUC
approaches have higher ASP than others; as the A increases, the ASP increases too. pAUC and AUC
have lowest and second lowest ASP values, respectively, the same as the orders of their RCI scores.
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Figure 3: The average accuracy of each ranked gene list in simulation studies: m = n = 10, p = 0 (top left);

m=n =20, p =0 (top right); m = n = 10, p = 0.6 (bottom left); m = n = 20, p = 0.6 (bottom right).

modT approach has a larger ASP than AUC and pAUC, but smaller than the mAUC approaches.

We also apply the optASP criterion (2.6) for variable selection; therefore, we use ASP to select
genes for each ranking method. Table 2 lists the results; subsequently, we also show the average
accuracy of each method. The number of genes selected by the above ranking methods and their
corresponding cumulative RCI scores are displayed. mAUC with A = 1.0 achieves highest RCI score
and accuracy, and only 9 genes were used. The modT method shows a similar sparsity as maucl.0,
but has lower prediction performance. To have a good balance between prediction performance and
sparsity, maucl.0 is the best choice. Note that the optASP criterion may also be used to select A for
mAUC approaches. We may select A for mAUC by choosing the one with the largest RCI score or the

most parsimonious model.

4.2. Example 2: lung cancer data

In this example, we used a lung cancer data set, GSE10245 (Kuner et al., 2009), downloaded from
the Gene Expression Omnibus (GEQO) data repository. There are two subtypes of lung cancer in
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Figure 4: The results of Colon cancer study: (a) The average RCI score of each ranked gene list; (b) The plot of
ASP. RCI = relative classifier information; ASP = averaged selection probability.
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Figure 5: The results of Lung cancer study: (a) The average RCI score of each ranked gene list; (b) The plot of
ASP. RCI = relative classifier information; ASP = averaged selection probability.

these data: subtype adenocarcinoma (AC) and subtype squamous cell carcinoma (SCC). GSE10245
is composed of 40 AC and 18 SCC samples. It includes 54,675 expressions, and they were measured
under the sample platform GPL157. The data set was preprocessed separately by rma() function in
affy package.

In Figure 5(a), mAUCs with 4 = 1.0 or 4 = 0.25 almost uniformly outperform others. The modT
approach is better than AUC and pAUC, but less powerful than mAUC with A = 1.0 or with 4 = 0.25.
Note that in this example, the RCI score of the mAUC approach is not linearly related to A. Generally,
A = 1.0 is recommended, which is consistent with the simulation and the colon cancer studies.

Figure 5(b) shows the plot of ASP when a different number of top genes are selected. It shows
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Table 2: Number of selected markers, averaged RCI score and accuracy when the opfASP criterion is applied in
real studies

Data Evaluation auc pauc mauc(.25 mauc(0.5 mauc0.75 maucl.0 modt
Number of markers 22 32 13 12 10 9 6
Colon RCI score 0.225 0.194 0.235 0.240 0.241 0.256 0.234
Accuracy 0.830 0.810 0.837 0.839 0.844 0.850 0.838
Number of markers 38 14 21 20 22 23 2
Lung RCI score 0.389 0.354 0.423 0.368 0.377 0.428 0.267
Accuracy 0.925 0914 0.935 0.919 0.921 0.937 0.868

RCI = relative classifier information; optASP = optimize averaged selection probability.

consistent findings to those of the colon cancer study; mAUC approaches have higher ASP as their A
increases. Note that in this case, the modT method is best when only a very small number of genes
are used, for example, less than 5.

After using the optASP criterion (2.6) for gene selection (Table 2), mauc0.25 and mauci.0 achieve
similarly the best result, the highest RCI score and accuracy, and a similarly modest number of genes;
maucl.0 is slightly better than mauc0.25. The modT method leads to the sparsest model but has the
lowest prediction RCI. The AUC method selects more genes than others and achieves a smaller RCI
score and accuracy than mauc0.25 and 0.75, while pAUC approaches spend less markers and have
lower RCI scores and accuracy than mAUC approaches. In the balance of sparsity and prediction,
maucl.0 is recommended.

5. Conclusion and discussion

In this paper, we proposed using the mAUC to rank genes. We evaluated the ranking methods based on
two criteria of the stability and prediction performance of the ranked list (which are correspondingly
measured by the selection probability) and the RCI score, respectively. It is shown that with both
real examples and simulation studies, the proposed method has a good prediction performance and
provides a stable rank list of genes.

From empirical results, we have found that the AUC method selects genes that have small differ-
ences between diseased and non-diseased groups and small variance. However, the pAUC method
tend to choose genes with large differences between the two groups and also with a large variance.
That is, both AUC and pAUC approaches failed to achieve good prediction performances. We have
demonstrated that using the mAUC as the ranking metric has a balance between selecting the above
two types of genes with better prediction performance. We also show that the mAUC-based method
outperforms modT, which is popularly used for screening microarray gene expression.

As pointed out by Pepe et al. (2003), ROC statistics are rank-based; this presumably infers their
robustness, but at the expense of ignoring the quantitative information of the gene expression. The
mAUC metric uses the rank statistic information as well as assigns additional importance to larger
differential gene expressions, which may provide to a more sensible ranking list. This may be the
reason why mAUC can achieve a ranked list that is both stable and powerful for class prediction. We
only illustrated the proposed method through microarray gene expression data; however, mAUC can
also be used in other types of data, such as RNA-seq, and DNA methylation data.
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