DOI QR코드

DOI QR Code

Macrozoobenthic Community Structures in the Shallow Subtidal Soft-bottoms around Wando-Doam Bay during Summer Season

남해 완도-도암만 연성기질의 여름철 대형저서동물의 군집구조

  • LIM, HYUN-SIG (Department of Marine and Fisheries Resources, Mokpo National University) ;
  • CHOI, JIN-WOO (South Sea Environment Research Center, Korea Institute of Ocean Science and Technology(KIOST)) ;
  • SON, MIN-HO (Marine Eco-Technology Institute)
  • 임현식 (목포대학교 해양수산자원학과) ;
  • 최진우 (한국해양과학기술원 남해특성연구센터) ;
  • 손민호 (해양생태기술연구소)
  • Received : 2016.11.15
  • Accepted : 2018.05.09
  • Published : 2018.05.31

Abstract

An ecological study on subtidal macrobenthic fauna was conducted from 25 stations in the estuarine area of Wando-Doam Bay, southern coast of Korea during August 2013. A total of 186 species was collected with a mean density of $1,229ind./m^2$ and a mean biomass of $265.7g/m^2$. Polychaetes showed the richest benthic fauna comprising 43% of total fauna, whereas mollusks appeared as density- and biomass-dominant fauna accounted for 45% and 48% of the mean density and biomass, respectively. The number of species and mean faunal density were relatively higher at the stations surrounded by Sinjido, Joyakdo and Gogeumdo showing a gradual decrease toward inner bay stations. Species number and density were negatively correlated with bottom water temperature, but they were positively correlated with both the bottom salinity and DO. The most dominant species in terms of density was a semelid bivalve, Theora fragilis which showed a positive correlation with TOC content of surface sediment and its high density occurred around Gogeum-Sinji-Joyakdo area where dense aquaculture facilities exist. In the bay mouth area, an amphipod species, Eriopisella sechellensis showed its higher density at the stations with low organic content but fine grains. The combination of water temperature, salinity, pH of bottom water, water and sulfur content of the surface sediment could explain 71% of the spatial distribution of macrobenthic fauna from the Bio-Env analysis. From the cluster analysis, the study area consisted of 6 distinct station groups lineated from offshore area toward inner area. Ampharete arctica, Goniada maculata, Eriopisella sechellensis, Theora fragilis, Caprella sp. were identified as the main contributing faunas in classification by the SIMPER analysis. From the value of BPI, the benthic communities at the inner and central Wando-Doam Bay were assessed to be in a normal condition whereas those at the outer Wando harbor and Gogeum-Sinji-Joyakdo area were assessed in a poor or very poor condition due to the high concentration of particulate organic matter might be originated from the nearby dense aquaculture facilities. This study indicated that pristine inner bay has been influenced by the organic material supplied from the outer bay. Thus it is necessary to establish an ecological management plan to reduce organic enrichment of sediment from dense aquaculture facilities in the outer bay.

완도-도암만 주변 조하대 여름철 저서동물 분포 양상을 파악하기 위하여 2013년 8월에 25개 정점을 선정하여 현장조사를 실시하였다. 조사 결과 186종이 출현하였으며, 평균밀도는 $1,229ind./m^2$, 생체량은 $265.7g/m^2$이었다. 출현종수는 환형동물(43%), 밀도 및 생체량은 연체동물이 우점분류군이었다. 신지도 및 조약도, 고금도 주변에서 많은 출현종수와 높은 밀도를 보였으며, 외해역에서 내만역으로 들어가면서 출현종수 및 밀도가 감소하였는데 저층 수온과는 음의 상관관계, 염분 및 DO와는 양의 상관관계를 보였다. 최우점종은 아기반투명조개(Theora fragilis)로서 수하식 양식장이 산재한 고금도-조약도-신지도 주변 정점에서 높은 밀도를 보였으며, TOC와 양의 상관관계를 보였다. 두 번째 우점종인 옆새우류 Eriopisella sechellensis는 도암만 입구역에 폭넓게 분포하였으며, 환경요인과는 유의한 상관관계가 나타나지 않았지만 유기물 함량이 낮으면서 입도가 세립한 정점들에서 상대적으로 높은 밀도를 보였다. BIO-ENV분석 결과 저층수의 수온, 염분, pH, 표층퇴적물의 함수율, 황 함량 조합이 저서동물군집 분포의 71%를 설명하고 있었다. 집괴분석 결과 6개 정점군으로 구분되었으며, SIMPER 분석결과 각 정점군별로 특징적인 종들이 기여한 것으로 나타났다. 저서오염지수(BPI)의 분포에 의한 군집 오염도 평가결과 완도 서측 및 고금도-조약도-신지도 주변의 양식장 밀집지역은 유기오염의 영향을 받고 있었다. 특히 완도-도암만 해역은 만입구역의 섬 사이 해역의 저서동물군집이 유기오염의 영향을 더 받고 있었으나, 그 밖의 대부분의 정점들은 정상적인 저서생태계를 보였다. 연구 해역은 입구역의 양식장으로부터 공급되는 유기물이 내해역까지 영향을 미쳐 만 전체가 유기오염의 영향을 받을 가능성이 있기 때문에 외해역의 유기오염원에 대한 영향을 저감하는 방향으로 생태계 관리가 이루어져야 할 것으로 보인다.

Keywords

References

  1. 국토해양부. 2010. 해양환경공정시험기준.
  2. 해양수산부. 2016. 연안관리정보시스템(http://www.coast.go.kr).
  3. 해양환경관리공단. 2013. 환경보전해역 가막만, 득량만, 완도-도암만, 함평만(저서환경). 232pp.
  4. Bodineau, L., G. Thoumelin, V. Beghin and M. Wartel. 1998. Tidal tile-scale changes in the composition of particulate organic matter within the estuarine turbidity maximum zone in the macrotidal Seine estuary, France; the use of fatty acid and sterol biomakers. Estuar. Coast. & Shelf Sci., 47: 37-49. https://doi.org/10.1006/ecss.1998.0344
  5. Bray, J.R. and J.T. Curtis, 1957. An ordination of the upland forest communities of southern Wisconsin. Ecol. Monogr., 27: 325-349. https://doi.org/10.2307/1942268
  6. Cha, B.J., Y.H. Choi, Y.S. Yang, M.W. Park, B.H. Kim and Y.B. Pean. 2014. Analysis of current distribution around a scaled-down abalone system to determine the cause of mass mortality of abalone, Haliotis discus hannai (Ino, 1952), Korean J. Malacol., 30: 9-15. https://doi.org/10.9710/kjm.2014.30.1.9
  7. Como, C., A. Floris, A. Pais, P. Rumolo, S. Saba, M. Sprovieri and P. Magni. 2015. Assessing the impact of the asian mussel Arcuatula senhousia in the recently invaded Oristano Lagoon-Gulf system(W. Sardinia, Italy). Estuar. Coast. & Shelf Sci., 201: 123-131.
  8. Crooks, J.A. 1996. The population ecology of an exotic mussel, Musculista senhousia, in a southern California Bay. Estuaries., 19: 42-50. https://doi.org/10.2307/1352650
  9. Crooks, J.A. 2002. Predators of the invasive mussel Musculista senhousia (Mollusca: Mytilidae). Pac. Sci., 56: 49-56. https://doi.org/10.1353/psc.2002.0002
  10. Crooks, J.A. and H.S. Khim, 1999. Architectural vs. biological effects of a habitat-altering, exotic mussel, Musculista senhousia. J. Exp. Mar. Biol. Ecol., 240: 53-75. https://doi.org/10.1016/S0022-0981(99)00041-6
  11. Garnier, J., G. Billen, S. Evan, H. Etcheber and P. Servais. 2008. Organic matter dynamics and budgets in the turbidity maximum zone of the Seine Estuary (France). Estuar. Coast. & Shelf Sci., 77: 150-162. https://doi.org/10.1016/j.ecss.2007.09.019
  12. Jiang, X, B. Lu and Y He. 2013. Response of the turbidity maximum zone to fluctuations in sediment discharge from river to estuary in the Chanjiang estuary(China), Estuar. Coast. & Shelf Sci., 131: 24-30. https://doi.org/10.1016/j.ecss.2013.07.003
  13. Jung, R.H., H.S. Lim, S.S. Kim, J.S. Park, K.A. Jeon, Y.S. Lee, J.S. Lee, K.Y. Kim and W.J. Go. 2002. A study of the macrozoobenthos at the intensive fish farming grounds in the southern coast of Korea. The Sea J. Korean Soc. Oceanogr., 7: 235-246.
  14. Jung, E.Y., H.J. Kim, J.B. Kim and C.H. Lee. 2006. Changes in biochemical components of several tissues in Solen grandis, in relation to gonad development phases. Korean J. Malacol., 22: 27-38.
  15. Kim, B., A. Choi, S.U. An, H.C. Kim, R.H. Jung, W.C. Lee and J.H. Hyun. 2011. Rates of sulfate reduction and iron reduction in the sediment associated with abalone aquaculture in the southern coastal waters of Korea. Ocean and Polar Res., 33: 435-445. https://doi.org/10.4217/OPR.2011.33.4.435
  16. Lim, H.S. 2015. Spatial distribution of soft bottom macrobenthos of Yeoja Bay in summer season, south coast of Korea. The Sea J. Korean Soc. Oceanogr., 20: 78-91.
  17. Lim, H.S., H.S Park, J.W. Choi and J.G. Je. 1999. Macrobenthic community of the Aenggang Bay, southern coast of Korea. J. Oceanol. Soc. Korea., 4: 80-92.
  18. Lim, H.S. and J.W. Choi. 2001. Macrobenthic community in the soft bottom around Sorido Island, southern coast of Korea. J. Korean Fish. Soc., 34: 225-237.
  19. Lim, H.S., J.W. Choi, J.G. Je and J.H Lee. 1992. Distribution pattern of macrozoobenthos at the farming ground in the western part of Chinhae Bay, Korea. Bull. Korean Fish. Soc., 25: 115-132.
  20. Lim, H.S. and J.S. Hong, 1997. Ecology of the macrozoobenthos in Chinhae Bay Korea 2. Distribution pattern of the major dominant species. J. Korean Fish. Soc., 30: 161-174.
  21. Lim, H.S. and J.S. Hong, 2002. Spatial distribution of macrozoobenthos along the salinity gradient and sedimentary environment in the Watancheon estuary, Beobsungpo, southwest coast of Korea. The Sea J. Korean Soc. Oceanogr., 4: 80-92.
  22. Lim, H.S. and K.Y. Park. 1999. Community structure of macrobenthos in the subtidal soft bottom in semienclosed Youngsan River Esturarine Bay, Southwest coast of Korea. J. Korean Fish. Soc., 32: 320-332.
  23. Lim, H.S., J.W. Choi and S.D. Choi, 2012. Spatial distribution of macrobenthos in Sueocheon stream estuary at the northern part of Gwangyang Bay, Korea. The Sea J. Korean Soc. Oceanogr., 17: 76-86.
  24. Lim, H.S., J.W. Choi and S.D. Choi 2016. The community structure of macrozoobenthos and its spatial distribution in the subtidal region off the Namhaedo Island, south coast of Korea. The Sea J. Korean Soc. Oceanogr., 21: 11-23.
  25. Ma, C.W., S.Y. Hong and H.S. Lim. 1995. Macrobenthic fauna of Deukryang Bay, Korea. J. Korean Fish. Soc., 28: 503-516.
  26. McLusky, D.S. and M. Elliott. 2004. The estuarine ecosystem. ecology, threats and management(3rd ed.). Oxford University Press. 214 pp.
  27. Nishijama, W., Y. Nakano, S. Nakai, T. Okuda, T, Imai and M. Okada. 2013. Impacts of flood events on macrobenthic community structure on an intertidal flat developing in the Ohta River estuary. Mar. Pollut. Bull., 74: 364-373. https://doi.org/10.1016/j.marpolbul.2013.06.028
  28. Park, H. S., J. H. Lee and J. W. Choi. 2000. Spatio-temporal distribution of macrobenthic community on subtidal area around Mokpo. Korea. The Sea J. Korean Soc. Oceanogr., 5: 169-176.
  29. Pearson T.H. and Rosenberg R. 1978. Macrobenthic succession in relation to organic enrichment and pollution of the marine environment. Oceanogr. Mar. Biol. Ann. Rev., 16: 229-311.
  30. Seo, J.Y., H.S. Lim and J.W. Choi. 2014. Distribution patterns of macrobenthic fauna communities in Deukryang Bay, one of the environment conservation areas. of Korea. Ocean Sci. J., 49: 97-113. https://doi.org/10.1007/s12601-014-0011-z
  31. Shannon, C. E. and W. Weaver, 1963. The Mathematical Theory of Communication. Univ. of Illinois Press, Urbana, 125pp.
  32. Sokolowski, A., M. Wolowicz, H. Asmus, R. Asmus, A. Carlier, Z. Gasiunaite, A. Gremare, H. Hummel, J. Lesutiene, A. Razinkovas, P.E. Renaud, P. Richard, M. Kedra, 2012. Is benthic food web structure related to divesity of marine macrobenthic communities?. Estuar. Coast. & Shelf Sci., 108: 76-86. https://doi.org/10.1016/j.ecss.2011.11.011
  33. Volkenborn, N., S.I.C. Hedtkamp, J.E.E. van Beusekom, K. Reise, 2007. Effects of bioturbation and bioirrigation by lugworms(Arenicola marina) on physical and chemical sediment properties and implications for intertidal habitat succesion. Estuar. Coast. & Shelf Sci., 74: 331-343. https://doi.org/10.1016/j.ecss.2007.05.001
  34. Whittacker, R.J. 1975. Communities and Ecosystems, 2nd Edition. Macmillan, New York, pp. 1-385.
  35. Ysebaert, T., P.M.J. Herman, P. Meire, J. Craeymeersch, H. Verbeek, C.H.R. Heip. 2003. Large-scale spatial patterns in estuaries: estuarine macrobenthic communities in the Schelde estuary, NW Europe. Estuar. Coast. & Shelf Sci., 57: 335-355. https://doi.org/10.1016/S0272-7714(02)00359-1
  36. Yoo, J.W. and J.S. Hong, 1996. Community structures of the benthic macrofaunal assemblages in Kyonggi bay and Han Estuary, Korea. J. Korean Soc. Oceanogr., 31: 7-17.