DOI QR코드

DOI QR Code

Quantitative CT Imaging in Chronic Obstructive Pulmonary Disease: Review of Current Status and Future Challenges

CT를 이용한 만성폐쇄성폐질환의 정량적 평가: 현 상태와 미래 과제에 대한 리뷰

  • Cho, Young Hoon (Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Seo, Joon Beom (Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Lee, Sang Min (Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Lee, Sang Min (Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Choe, Jooae (Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Lee, Dabee (Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Kim, Namkug (Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine)
  • 조영훈 (울산대학교 의과대학 서울아산병원 영상의학과, 영상의학연구소) ;
  • 서준범 (울산대학교 의과대학 서울아산병원 영상의학과, 영상의학연구소) ;
  • 이상민 (울산대학교 의과대학 서울아산병원 영상의학과, 영상의학연구소) ;
  • 이상민 (울산대학교 의과대학 서울아산병원 영상의학과, 영상의학연구소) ;
  • 최주애 (울산대학교 의과대학 서울아산병원 영상의학과, 영상의학연구소) ;
  • 이다비 (울산대학교 의과대학 서울아산병원 영상의학과, 영상의학연구소) ;
  • 김남국 (울산대학교 의과대학 서울아산병원 영상의학과, 영상의학연구소)
  • Received : 2017.09.21
  • Accepted : 2017.11.07
  • Published : 2018.01.01

Abstract

Chronic Obstructive Pulmonary Disease (COPD) is a complex heterogeneous condition with various clinical and pathologic features. In recent years, technical advances in quantitative CT imaging have generated considerable interest because they can provide a more precise and objective assessment of COPD. Emphysema and small-airway disease, the two major components of COPD, and other comorbidities, including pulmonary vessel alterations, atherosclerosis, cachexia, and osteoporosis, can all be assessed by means of quantitative imaging parameters. Increasing numbers of studies provide promising reports indicating that such parameters are associated with clinical measures of disease severity, respiratory symptoms, COPD exacerbations, and mortality. Despite such optimistic results, there are still many obstacles to using this quantitative technology in everyday practice to manage COPD patients. In this article, we review the current technical status of quantitative CT assessment, emphasizing its clinical implications and limitations. We also discuss present challenges and the potential future role of quantitative CT imaging in assessing COPD.

만성폐쇄성폐질환은 다양한 임상적, 병리학적 특징을 가지고 있는 복합적인 질병이다. CT는 만성폐쇄성폐질환을 평가하는 데 가장 널리 사용되는 영상도구이나, 지금까지의 주관적 평가 방법으로는 임상적으로 의미 있는 일관되고 객관적인 영상 지표를 얻는 데 한계점이 있었다. 이러한 문제점을 극복하기 위하여 만성폐쇄성폐질환 환자에게서 얻은 CT 정보를 정량적으로 분석하는 방법이 많은 연구자들의 주목을 받았고, 이러한 분야의 기술적 진보를 바탕으로 폐기종과 소기도 질환이라는 만성폐쇄성폐질환의 두 주요 요소뿐만 아니라 폐혈관의 변화, 심혈관 질환, 체 성분 변화, 그리고 골다공증을 포함하는 다양한 변화를 정량적으로 분석하고 측정할 수 있게 되었다. 그리고 이렇게 측정된 정량적인 수치들은 만성폐쇄성폐질환 환자의 폐 기능 검사 수치와 연관성이 보고되었으며, 더 나아가 질병의 실제 임상적 경과와 환자의 예후와도 연관성이 있는 것으로 나타났다. 하지만 이러한 긍정적인 보고에도 불구하고 아직 CT를 이용한 만성폐쇄성폐질환의 정량적 평가 방법은 실제 진료와 환자의 치료에 널리 적용되고 있지 않다. 이에 저자들은 먼저 현재까지 이루어진 CT를 이용한 만성폐쇄성폐질환의 정량적 평가 방법의 기술적 진보에 대하여 리뷰하고, 이러한 방법이 질병과 환자의 평가에 갖는 임상적 의미에 대하여 서술하고자 한다. 또한, 이러한 기술이 실질적으로 임상적으로 유용한 도구로 자리잡기 위해서 극복해야 하는 한계점과 문제점에 대하여 논의하고, 마지막으로 앞으로 CT를 이용한 만성폐쇄성폐질환의 정량적 평가 방법에 대한 연구가 나아가야 하는 방향에 대하여 제안하고자 한다.

Keywords

Acknowledgement

Supported by : Small and Medium Business Administration (SMBA)

References

  1. Vestbo J, Hurd SS, Agusti AG, Jones PW, Vogelmeier C, Anzueto A, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am J Respir Crit Care Med 2013;187:347-365 https://doi.org/10.1164/rccm.201204-0596PP
  2. Lopez AD, Shibuya K, Rao C, Mathers CD, Hansell AL, Held LS, et al. Chronic obstructive pulmonary disease: current burden and future projections. Eur Respir J 2006;27:397-412 https://doi.org/10.1183/09031936.06.00025805
  3. Schroeder JD, McKenzie AS, Zach JA, Wilson CG, Curran-Everett D, Stinson DS, et al. Relationships between airflow obstruction and quantitative CT measurements of emphysema, air trapping, and airways in subjects with and without chronic obstructive pulmonary disease. AJR Am J Roentgenol 2013;201:W460-W470 https://doi.org/10.2214/AJR.12.10102
  4. Cavigli E, Camiciottoli G, Diciotti S, Orlandi I, Spinelli C, Meoni E, et al. Whole-lung densitometry versus visual assessment of emphysema. Eur Radiol 2009;19:1686-1692 https://doi.org/10.1007/s00330-009-1320-y
  5. Galban CJ, Han MK, Boes JL, Chughtai KA, Meyer CR, Johnson TD, et al. Computed tomography-based biomarker provides unique signature for diagnosis of COPD phenotypes and disease progression. Nat Med 2012;18:1711-1715 https://doi.org/10.1038/nm.2971
  6. Muller NL, Staples CA, Miller RR, Abboud RT. "Density mask". An objective method to quantitate emphysema using computed tomography. Chest 1988;94:782-787 https://doi.org/10.1378/chest.94.4.782
  7. Madani A, Zanen J, de Maertelaer V, Gevenois PA. Pulmonary emphysema: objective quantification at multi-detector row CT--comparison with macroscopic and microscopic morphometry. Radiology 2006;238:1036-1043 https://doi.org/10.1148/radiol.2382042196
  8. Heussel CP, Herth FJ, Kappes J, Hantusch R, Hartlieb S, Weinheimer O, et al. Fully automatic quantitative assessment of emphysema in computed tomography: comparison with pulmonary function testing and normal values. Eur Radiol 2009;19:2391-2402 https://doi.org/10.1007/s00330-009-1437-z
  9. Lee YK, Oh YM, Lee JH, Kim EK, Lee JH, Kim N, et al. Quantitative assessment of emphysema, air trapping, and airway thickening on computed tomography. Lung 2008;186:157-165 https://doi.org/10.1007/s00408-008-9071-0
  10. Stolk J, Dirksen A, van der Lugt AA, Hutsebaut J, Mathieu J, de Ree J, et al. Repeatability of lung density measurements with low-dose computed tomography in subjects with alpha-1-antitrypsin deficiency-associated emphysema. Invest Radiol 2001;36:648-651 https://doi.org/10.1097/00004424-200111000-00004
  11. Dirksen A. Monitoring the progress of emphysema by repeat computed tomography scans with focus on noise reduction. Proc Am Thorac Soc 2008;5:925-928 https://doi.org/10.1513/pats.200804-033QC
  12. Gietema HA, Muller NL, Fauerbach PV, Sharma S, Edwards LD, Camp PG, et al. Quantifying the extent of emphysema: factors associated with radiologists' estimations and quantitative indices of emphysema severity using the ECLIPSE cohort. Acad Radiol 2011;18:661-671 https://doi.org/10.1016/j.acra.2011.01.011
  13. Hwang J, Lee M, Lee SM, Oh SY, Oh YM, Kim N, et al. A size-based emphysema severity index: robust to the breath-hold-level variations and correlated with clinical parameters. Int J Chron Obstruct Pulmon Dis 2016;11:1835-1841 https://doi.org/10.2147/COPD.S109846
  14. Mishima M, Hirai T, Itoh H, Nakano Y, Sakai H, Muro S, et al. Complexity of terminal airspace geometry assessed by lung computed tomography in normal subjects and patients with chronic obstructive pulmonary disease. Proc Natl Acad Sci U S A 1999;96:8829-8834 https://doi.org/10.1073/pnas.96.16.8829
  15. Bankier AA, De Maertelaer V, Keyzer C, Gevenois PA. Pulmonary emphysema: subjective visual grading versus objective quantification with macroscopic morphometry and thin-section CT densitometry. Radiology 1999;211:851-858 https://doi.org/10.1148/radiology.211.3.r99jn05851
  16. Dirksen A, Dijkman JH, Madsen F, Stoel B, Hutchison DC, Ulrik CS, et al. A randomized clinical trial of alpha(1)-antitrypsin augmentation therapy. Am J Respir Crit Care Med 1999; 160(5 Pt 1):1468-1472 https://doi.org/10.1164/ajrccm.160.5.9901055
  17. Haruna A, Muro S, Nakano Y, Ohara T, Hoshino Y, Ogawa E, et al. CT scan findings of emphysema predict mortality in COPD. Chest 2010;138:635-640 https://doi.org/10.1378/chest.09-2836
  18. Johannessen A, Skorge TD, Bottai M, Grydeland TB, Nilsen RM, Coxson H, et al. Mortality by level of emphysema and airway wall thickness. Am J Respir Crit Care Med 2013;187: 602-608 https://doi.org/10.1164/rccm.201209-1722OC
  19. Mohamed Hoesein FA, de Hoop B, Zanen P, Gietema H, Kruitwagen CL, van Ginneken B, et al. CT-quantified emphysema in male heavy smokers: association with lung function decline. Thorax 2011;66:782-787 https://doi.org/10.1136/thx.2010.145995
  20. Han MK, Kazerooni EA, Lynch DA, Liu LX, Murray S, Curtis JL, et al. Chronic obstructive pulmonary disease exacerbations in the COPDGene study: associated radiologic phenotypes. Radiology 2011;261:274-282. https://doi.org/10.1148/radiol.11110173
  21. Jairam PM, van der Graaf Y, Lammers JW, Mali WP, de Jong PA; PROVIDI Study group. Incidental findings on chest CT imaging are associated with increased COPD exacerbations and mortality. Thorax 2015;70:725-731 https://doi.org/10.1136/thoraxjnl-2014-206160
  22. Oh YM, Sheen SS, Park JH, Jin UR, Yoo JW, Seo JB, et al. Emphysematous phenotype is an independent predictor for frequent exacerbation of COPD. Int J Tuberc Lung Dis 2014; 18:1407-1414 https://doi.org/10.5588/ijtld.14.0205
  23. Nakano Y, Sakai H, Muro S, Hirai T, Oku Y, Nishimura K, et al. Comparison of low attenuation areas on computed tomographic scans between inner and outer segments of the lung in patients with chronic obstructive pulmonary disease: incidence and contribution to lung function. Thorax 1999; 54:384-389 https://doi.org/10.1136/thx.54.5.384
  24. Parr DG, Stoel BC, Stolk J, Stockley RA. Pattern of emphysema distribution in alpha1-antitrypsin deficiency influences lung function impairment. Am J Respir Crit Care Med 2004;170:1172-1178. https://doi.org/10.1164/rccm.200406-761OC
  25. Chae EJ, Seo JB, Song JW, Kim N, Park BW, Lee YK, et al. Slope of emphysema index: an objective descriptor of regional heterogeneity of emphysema and an independent determinant of pulmonary function. AJR Am J Roentgenol 2010;194:W248-W255 https://doi.org/10.2214/AJR.09.2672
  26. Castaldi PJ, San Jose Estepar R, Mendoza CS, Hersh CP, Laird N, Crapo JD, et al. Distinct quantitative computed tomography emphysema patterns are associated with physiology and function in smokers. Am J Respir Crit Care Med 2013; 188:1083-1090 https://doi.org/10.1164/rccm.201305-0873OC
  27. Nakano Y, Coxson HO, Bosan S, Rogers RM, Sciurba FC, Keenan RJ, et al. Core to rind distribution of severe emphysema predicts outcome of lung volume reduction surgery. Am J Respir Crit Care Med 2001;164:2195-2199 https://doi.org/10.1164/ajrccm.164.12.2012140
  28. Nakano Y, Wong JC, de Jong PA, Buzatu L, Nagao T, Coxson HO, et al. The prediction of small airway dimensions using computed tomography. Am J Respir Crit Care Med 2005; 171:142-146 https://doi.org/10.1164/rccm.200407-874OC
  29. Hasegawa M, Nasuhara Y, Onodera Y, Makita H, Nagai K, Fuke S, et al. Airflow limitation and airway dimensions in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2006;173:1309-1315 https://doi.org/10.1164/rccm.200601-037OC
  30. Kim N, Seo JB, Song KS, Chae EJ, Kang SH. Semi-automatic measurement of the airway dimension by computed tomography using the full-with-half-maximum method: a study of the measurement accuracy according to the orientation of an artificial airway. Korean J Radiol 2008;9:236-242 https://doi.org/10.3348/kjr.2008.9.3.236
  31. Cho YH, Seo JB, Kim N, Lee HJ, Hwang HJ, Kim EY, et al. Comparison of a new integral-based half-band method for CT measurement of peripheral airways in COPD with a conventional full-width half-maximum method using both phantom and clinical CT images. J Comput Assist Tomogr 2015;39:428-436
  32. Achenbach T, Weinheimer O, Biedermann A, Schmitt S, Freudenstein D, Goutham E, et al. MDCT assessment of airway wall thickness in COPD patients using a new method: correlations with pulmonary function tests. Eur Radiol 2008; 18:2731-2738 https://doi.org/10.1007/s00330-008-1089-4
  33. Berger P, Perot V, Desbarats P, Tunon-de-Lara JM, Marthan R, Laurent F. Airway wall thickness in cigarette smokers: quantitative thin-section CT assessment. Radiology 2005;235: 1055-1064 https://doi.org/10.1148/radiol.2353040121
  34. King GG, Muller NL, Whittall KP, Xiang QS, Pare PD. An analysis algorithm for measuring airway lumen and wall areas from high-resolution computed tomographic data. Am J Respir Crit Care Med 2000;161(2 Pt 1):574-580 https://doi.org/10.1164/ajrccm.161.2.9812073
  35. Grydeland TB, Dirksen A, Coxson HO, Pillai SG, Sharma S, Eide GE, et al. Quantitative computed tomography: emphysema and airway wall thickness by sex, age and smoking. Eur Respir J 2009;34:858-865 https://doi.org/10.1183/09031936.00167908
  36. Yamashiro T, Matsuoka S, Estepar RS, Dransfield MT, Diaz A, Reilly JJ, et al. Quantitative assessment of bronchial wall attenuation with thin-section CT: an indicator of airflow limitation in chronic obstructive pulmonary disease. AJR Am J Roentgenol 2010;195:363-369 https://doi.org/10.2214/AJR.09.3653
  37. Nambu A, Zach J, Schroeder J, Jin G, Kim SS, Kim YI, et al. Quantitative computed tomography measurements to evaluate airway disease in chronic obstructive pulmonary disease: relationship to physiological measurements, clinical index and visual assessment of airway disease. Eur J Radiol 2016;85:2144-2151 https://doi.org/10.1016/j.ejrad.2016.09.010
  38. Martinez CH, Chen YH, Westgate PM, Liu LX, Murray S, Curtis JL, et al. Relationship between quantitative CT metrics and health status and BODE in chronic obstructive pulmonary disease. Thorax 2012;67:399-406 https://doi.org/10.1136/thoraxjnl-2011-201185
  39. McDonough JE, Yuan R, Suzuki M, Seyednejad N, Elliott WM, Sanchez PG, et al. Small-airway obstruction and emphysema in chronic obstructive pulmonary disease. N Engl J Med 2011;365:1567-1575 https://doi.org/10.1056/NEJMoa1106955
  40. Murphy K, Pluim JP, van Rikxoort EM, de Jong PA, de Hoop B, Gietema HA, et al. Toward automatic regional analysis of pulmonary function using inspiration and expiration thoracic CT. Med Phys 2012;39:1650-1662 https://doi.org/10.1118/1.3687891
  41. Matsuoka S, Kurihara Y, Yagihashi K, Hoshino M, Watanabe N, Nakajima Y. Quantitative assessment of air trapping in chronic obstructive pulmonary disease using inspiratory and expiratory volumetric MDCT. AJR Am J Roentgenol 2008; 190:762-769 https://doi.org/10.2214/AJR.07.2820
  42. Barbosa EM Jr, Song G, Tustison N, Kreider M, Gee JC, Gefter WB, et al. Computational analysis of thoracic multidetector row HRCT for segmentation and quantification of small airway air trapping and emphysema in obstructive pulmonary disease. Acad Radiol 2011;18:1258-1269 https://doi.org/10.1016/j.acra.2011.06.004
  43. Kim EY, Seo JB, Lee HJ, Kim N, Lee E, Lee SM, et al. Detailed analysis of the density change on chest CT of COPD using non-rigid registration of inspiration/expiration CT scans. Eur Radiol 2015;25:541-549 https://doi.org/10.1007/s00330-014-3418-0
  44. Lee SM, Seo JB, Lee SM, Kim N, Oh SY, Oh YM. Optimal threshold of subtraction method for quantification of air-trapping on coregistered CT in COPD patients. Eur Radiol 2016;26:2184-2192 https://doi.org/10.1007/s00330-015-4070-z
  45. Rambod M, Porszasz J, Make BJ, Crapo JD, Casaburi R; COPDGene Investigators. Six-minute walk distance predictors, including CT scan measures, in the COPDGene cohort. Chest 2012;141:867-875 https://doi.org/10.1378/chest.11-0870
  46. Hersh CP, Washko GR, Estepar RS, Lutz S, Friedman PJ, Han MK, et al. Paired inspiratory-expiratory chest CT scans to assess for small airways disease in COPD. Respir Res 2013; 14:42 https://doi.org/10.1186/1465-9921-14-42
  47. Bhatt SP, Soler X, Wang X, Murray S, Anzueto AR, Beaty TH, et al. Association between Functional Small Airway Disease and FEV1 Decline in Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 2016;194:178-184 https://doi.org/10.1164/rccm.201511-2219OC
  48. Wells JM, Washko GR, Han MK, Abbas N, Nath H, Mamary AJ, et al. Pulmonary arterial enlargement and acute exacerbations of COPD. N Engl J Med 2012;367:913-921 https://doi.org/10.1056/NEJMoa1203830
  49. Matsuoka S, Washko GR, Dransfield MT, Yamashiro T, San Jose Estepar R, Diaz A, et al. Quantitative CT measurement of cross-sectional area of small pulmonary vessel in COPD: correlations with emphysema and airflow limitation. Acad Radiol 2010;17:93-99 https://doi.org/10.1016/j.acra.2009.07.022
  50. Estepar RS, Kinney GL, Black-Shinn JL, Bowler RP, Kindlmann GL, Ross JC, et al. Computed tomographic measures of pulmonary vascular morphology in smokers and their clinical implications. Am J Respir Crit Care Med 2013;188: 231-239 https://doi.org/10.1164/rccm.201301-0162OC
  51. Stefan MS, Bannuru RR, Lessard D, Gore JM, Lindenauer PK, Goldberg RJ. The impact of COPD on management and outcomes of patients hospitalized with acute myocardial infarction: a 10-year retrospective observational study. Chest 2012;141:1441-1448 https://doi.org/10.1378/chest.11-2032
  52. Sin DD, Wu L, Man SF. The relationship between reduced lung function and cardiovascular mortality: a population-based study and a systematic review of the literature. Chest 2005;127:1952-1959 https://doi.org/10.1378/chest.127.6.1952
  53. Williams MC, Murchison JT, Edwards LD, Agusti A, Bakke P, Calverley PM, et al. Coronary artery calcification is increased in patients with COPD and associated with increased morbidity and mortality. Thorax 2014;69:718-723 https://doi.org/10.1136/thoraxjnl-2012-203151
  54. Chae EJ, Seo JB, Oh YM, Lee JS, Jung Y, Lee SD. Severity of systemic calcified atherosclerosis is associated with airflow limitation and emphysema. J Comput Assist Tomogr 2013; 37:743-749 https://doi.org/10.1097/RCT.0b013e318299f9e7
  55. McDonald ML, Diaz AA, Ross JC, San Jose Estepar R, Zhou L, Regan EA, et al. Quantitative computed tomography measures of pectoralis muscle area and disease severity in chronic obstructive pulmonary disease. A cross-sectional study. Ann Am Thorac Soc 2014;11:326-334 https://doi.org/10.1513/AnnalsATS.201307-229OC
  56. Park MJ, Cho JM, Jeon KN, Bae KS, Kim HC, Choi DS, et al. Mass and fat infiltration of intercostal muscles measured by CT histogram analysis and their correlations with COPD severity. Acad Radiol 2014;21:711-717 https://doi.org/10.1016/j.acra.2014.02.003
  57. Jaramillo JD, Wilson C, Stinson DS, Lynch DA, Bowler RP, Lutz S, et al. Reduced Bone Density and Vertebral Fractures in Smokers. Men and COPD Patients at Increased Risk. Ann Am Thorac Soc 2015;12:648-656 https://doi.org/10.1513/AnnalsATS.201412-591OC
  58. Kiyokawa H, Muro S, Oguma T, Sato S, Tanabe N, Takahashi T, et al. Impact of COPD exacerbations on osteoporosis assessed by chest CT scan. COPD 2012;9:235-242 https://doi.org/10.3109/15412555.2011.650243

Cited by

  1. Quantitative Computed Tomography Assessment of Respiratory Muscles in Male Patients Diagnosed with Emphysema vol.78, pp.6, 2018, https://doi.org/10.3348/jksr.2018.78.6.371
  2. Perilesional emphysema as a predictor of risk of complications from computed tomography-guided transthoracic lung biopsy vol.37, pp.12, 2019, https://doi.org/10.1007/s11604-019-00880-w
  3. Quantitative evaluation of computed tomography findings in patients with bronchial asthma: prediction of therapeutic response vol.65, pp.6, 2018, https://doi.org/10.1111/1754-9485.13169
  4. Deep radiomics-based survival prediction in patients with chronic obstructive pulmonary disease vol.11, pp.1, 2018, https://doi.org/10.1038/s41598-021-94535-4