DOI QR코드

DOI QR Code

Clinical Feasibility of Synthetic Magnetic Resonance Imaging in the Diagnosis of Internal Derangements of the Knee

  • Yi, Jisook (Department of Radiology, Research Institute of Radiological Science, YUHS-KRIBB Medical Convergence Research Institute, and Severance Biomedical Science Institute, Yonsei University College of Medicine) ;
  • Lee, Young Han (Department of Radiology, Research Institute of Radiological Science, YUHS-KRIBB Medical Convergence Research Institute, and Severance Biomedical Science Institute, Yonsei University College of Medicine) ;
  • Song, Ho-Taek (Department of Radiology, Research Institute of Radiological Science, YUHS-KRIBB Medical Convergence Research Institute, and Severance Biomedical Science Institute, Yonsei University College of Medicine) ;
  • Suh, Jin-Suck (Department of Radiology, Research Institute of Radiological Science, YUHS-KRIBB Medical Convergence Research Institute, and Severance Biomedical Science Institute, Yonsei University College of Medicine)
  • Received : 2016.12.21
  • Accepted : 2017.08.12
  • Published : 2018.04.01

Abstract

Objective: To evaluate the feasibility of synthetic magnetic resonance imaging (MRI) compared to conventional MRI for the diagnosis of internal derangements of the knee at 3T. Materials and Methods: Following Institutional Review Board approval, image sets of conventional and synthetic MRI in 39 patients were included. Two musculoskeletal radiologists compared the image sets and qualitatively analyzed the images. Subjective image quality was assessed using a four-grade scale. Interobserver agreement and intersequence agreement between conventional and synthetic images for cartilage lesions, tears of the cruciate ligament, and tears of the meniscus were independently assessed using Kappa statistics. In patients who underwent arthroscopy (n = 8), the sensitivity, specificity, and accuracy for evaluated internal structures were calculated using arthroscopic findings as the gold standard. Results: There was no statistically significant difference in image quality (p = 0.90). Interobserver agreement (${\kappa}=0.649-0.981$) and intersequence agreement (${\kappa}=0.794-0.938$) were nearly perfect for all evaluated structures. The sensitivity, specificity, and accuracy for detecting cartilage lesions (sensitivity, 63.6% vs. 54.6-63.6%; specificity, 91.9% vs. 91.9%; accuracy, 83.3-85.4% vs. 83.3-85.4%) and tears of the cruciate ligament (sensitivity, specificity, accuracy, 100% vs. 100%) and meniscus (sensitivity, 50.0-62.5% vs. 62.5%; specificity, 100% vs. 87.5-100%; accuracy, 83.3-85.4% vs. 83.3-85.4%) were similar between the two MRI methods. Conclusion: Conventional and synthetic MRI showed substantial to almost perfect degree of agreement for the assessment of internal derangement of knee joints. Synthetic MRI may be feasible in the diagnosis of internal derangements of the knee.

Keywords

Acknowledgement

Supported by : National Research Foundation (NRF)

References

  1. Fritz RC. MR imaging of meniscal and cruciate ligament injuries. Magn Reson Imaging Clin N Am 2003;11:283-293 https://doi.org/10.1016/S1064-9689(03)00028-X
  2. Crema MD, Roemer FW, Marra MD, Burstein D, Gold GE, Eckstein F, et al. Articular cartilage in the knee: current MR imaging techniques and applications in clinical practice and research. Radiographics 2011;31:37-61 https://doi.org/10.1148/rg.311105084
  3. Stoller DW. Magnetic resonance imaging in orthopaedics and sports medicine, Volume 1, 3rd ed. Ambler, PA: Lippincott Williams & Wilkins, 2007:307
  4. Duc SR, Zanetti M, Kramer J, Käch KP, Zollikofer CL, Wentz KU. Magnetic resonance imaging of anterior cruciate ligament tears: evaluation of standard orthogonal and tailored paracoronal images. Acta Radiol 2005;46:729-733 https://doi.org/10.1080/02841850500215907
  5. Roberts CC, Towers JD, Spangehl MJ, Carrino JA, Morrison WB. Advanced MR imaging of the cruciate ligaments. Radiol Clin North Am 2007;45:1003-1016, vi-vii https://doi.org/10.1016/j.rcl.2007.08.007
  6. Kim HS, Yoon YC, Park KJ, Wang JH, Choe BK. Interposition of the posterior cruciate ligament into the medial compartment of the knee joint on coronal magnetic resonance imaging. Korean J Radiol 2016; 17:239-244 https://doi.org/10.3348/kjr.2016.17.2.239
  7. Fitzgerald SW, Remer EM, Friedman H, Rogers LF, Hendrix RW, Schafer MF. MR evaluation of the anterior cruciate ligament: value of supplementing sagittal images with coronal and axial images. AJR Am J Roentgenol 1993;160:1233-1237 https://doi.org/10.2214/ajr.160.6.8498224
  8. Peterfy CG, Gold G, Eckstein F, Cicuttini F, Dardzinski B, Stevens R. MRI protocols for whole-organ assessment of the knee in osteoarthritis. Osteoarthritis Cartilage 2006;14 Suppl A:A95-A111
  9. Betts AM, Leach JL, Jones BV, Zhang B, Serai S. Brain imaging with synthetic MR in children: clinical quality assessment. Neuroradiology 2016;58:1017-1026 https://doi.org/10.1007/s00234-016-1723-9
  10. Blystad I, Warntjes JB, Smedby O, Landtblom AM, Lundberg P, Larsson EM. Synthetic MRI of the brain in a clinical setting. Acta Radiol 2012;53:1158-1163 https://doi.org/10.1258/ar.2012.120195
  11. Hasan KM, Walimuni IS, Abid H, Wolinsky JS, Narayana PA. Multi-modal quantitative MRI investigation of brain tissue neurodegeneration in multiple sclerosis. J Magn Reson Imaging 2012;35:1300-1311 https://doi.org/10.1002/jmri.23539
  12. West J, Warntjes JB, Lundberg P. Novel whole brain segmentation and volume estimation using quantitative MRI. Eur Radiol 2012;22:998-1007 https://doi.org/10.1007/s00330-011-2336-7
  13. Bonnier G, Roche A, Romascano D, Simioni S, Meskaldji D, Rotzinger D, et al. Advanced MRI unravels the nature of tissue alterations in early multiple sclerosis. Ann Clin Transl Neurol 2014;1:423-432 https://doi.org/10.1002/acn3.68
  14. Granberg T, Uppman M, Hashim F, Cananau C, Nordin LE, Shams S, et al. Clinical feasibility of synthetic MRI in multiple sclerosis: a diagnostic and volumetric validation study. AJNR Am J Neuroradiol 2016;37:1023-1029 https://doi.org/10.3174/ajnr.A4665
  15. Masi JN, Sell CA, Phan C, Han E, Newitt D, Steinbach L, et al. Cartilage MR imaging at 3.0 versus that at 1.5 T: preliminary results in a porcine model. Radiology 2005;236:140-150 https://doi.org/10.1148/radiol.2361040747
  16. Barnett MJ. MR diagnosis of internal derangements of the knee: effect of field strength on efficacy. AJR Am J Roentgenol 1993;161:115-118 https://doi.org/10.2214/ajr.161.1.8517288
  17. Mink JH, Levy T, Crues JV 3rd. Tears of the anterior cruciate ligament and menisci of the knee: MR imaging evaluation. Radiology 1988;167:769-774 https://doi.org/10.1148/radiology.167.3.3363138
  18. Robertson PL, Schweitzer ME, Bartolozzi AR, Ugoni A. Anterior cruciate ligament tears: evaluation of multiple signs with MR imaging. Radiology 1994;193:829-834 https://doi.org/10.1148/radiology.193.3.7972833
  19. De Smet AA, Norris MA, Yandow DR, Quintana FA, Graf BK, Keene JS. MR diagnosis of meniscal tears of the knee: importance of high signal in the meniscus that extends to the surface. AJR Am J Roentgenol 1993;161:101-107 https://doi.org/10.2214/ajr.161.1.8517286
  20. Noyes FR, Stabler CL. A system for grading articular cartilage lesions at arthroscopy. Am J Sports Med 1989;17:505-513 https://doi.org/10.1177/036354658901700410
  21. Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics 1977;33:159-174 https://doi.org/10.2307/2529310
  22. Barth M, Breuer F, Koopmans PJ, Norris DG, Poser BA. Simultaneous multislice (SMS) imaging techniques. Magn Reson Med 2016;75:63-81 https://doi.org/10.1002/mrm.25897
  23. Zahneisen B, Ernst T, Poser BA. SENSE and simultaneous multislice imaging. Magn Reson Med 2015;74:1356-1362 https://doi.org/10.1002/mrm.25519
  24. Zhang T, Chowdhury S, Lustig M, Barth RA, Alley MT, Grafendorfer T, et al. Clinical performance of contrast enhanced abdominal pediatric MRI with fast combined parallel imaging compressed sensing reconstruction. J Magn Reson Imaging 2014;40:13-25 https://doi.org/10.1002/jmri.24333
  25. Warntjes JB, Dahlqvist O, Lundberg P. Novel method for rapid, simultaneous T1, T2*, and proton density quantification. Magn Reson Med 2007;57:528-537 https://doi.org/10.1002/mrm.21165
  26. Nozaki T, Kaneko Y, Yu HJ, Kaneshiro K, Schwarzkopf R, Yoshioka H. Comparison of T1rho imaging between spoiled gradient echo (SPGR) and balanced steady state free precession (b-FFE) sequence of knee cartilage at 3T MRI. Eur J Radiol 2015;84:1299-1305 https://doi.org/10.1016/j.ejrad.2015.03.029
  27. Kijowski R, Blankenbaker DG, Munoz Del Rio A, Baer GS, Graf BK. Evaluation of the articular cartilage of the knee joint: value of adding a T2 mapping sequence to a routine MR imaging protocol. Radiology 2013;267:503-513 https://doi.org/10.1148/radiol.12121413
  28. Yoon MA, Hong SJ, Im AL, Kang CH, Kim BH, Kim IS. Comparison of T1rho and T2 mapping of knee articular cartilage in an asymptomatic population. Korean J Radiol 2016;17:912-918 https://doi.org/10.3348/kjr.2016.17.6.912
  29. Oei EH, Nikken JJ, Verstijnen AC, Ginai AZ, Myriam Hunink MG. MR imaging of the menisci and cruciate ligaments: a systematic review. Radiology 2003;226:837-848 https://doi.org/10.1148/radiol.2263011892
  30. Jung JY, Yoon YC, Kwon JW, Ahn JH, Choe BK. Diagnosis of internal derangement of the knee at 3.0-T MR imaging: 3D isotropic intermediate-weighted versus 2D sequences. Radiology 2009;253:780-787 https://doi.org/10.1148/radiol.2533090457
  31. Jung JY, Yoon YC, Kim HR, Choe BK, Wang JH, Jung JY. Knee derangements: comparison of isotropic 3D fast spin-echo, isotropic 3D balanced fast field-echo, and conventional 2D fast spin-echo MR imaging. Radiology 2013;268:802-813 https://doi.org/10.1148/radiol.13121990
  32. Kijowski R, Davis KW, Woods MA, Lindstrom MJ, De Smet AA, Gold GE, et al. Knee joint: comprehensive assessment with 3D isotropic resolution fast spin-echo MR imaging--diagnostic performance compared with that of conventional MR imaging at 3.0 T. Radiology 2009;252:486-495 https://doi.org/10.1148/radiol.2523090028
  33. Nguyen JC, De Smet AA, Graf BK, Rosas HG. MR imaging-based diagnosis and classification of meniscal tears. Radiographics 2014;34:981-999 https://doi.org/10.1148/rg.344125202
  34. Pipe JG. Motion correction with PROPELLER MRI: application to head motion and free-breathing cardiac imaging. Magn Reson Med 1999;42:963-969 https://doi.org/10.1002/(SICI)1522-2594(199911)42:5<963::AID-MRM17>3.0.CO;2-L

Cited by

  1. Feasibility of a Synthetic MR Imaging Sequence for Spine Imaging vol.39, pp.9, 2018, https://doi.org/10.3174/ajnr.a5728
  2. The diagnostic performance of quantitative mapping in breast cancer patients: a preliminary study using synthetic MRI vol.20, pp.1, 2018, https://doi.org/10.1186/s40644-020-00365-4
  3. Investigating the Image Quality and Utility of Synthetic MRI in the Breast vol.20, pp.4, 2018, https://doi.org/10.2463/mrms.mp.2020-0132
  4. Editorial for “Enhanced Mass on Contrast‐Enhanced Breast MRI: Differentiation Using a Combination of Dynamic Contrast‐Enhanced MRI and Quantitative Evaluation With Synthetic MRI vol.53, pp.2, 2021, https://doi.org/10.1002/jmri.27379
  5. Deep Generative Adversarial Networks: Applications in Musculoskeletal Imaging vol.3, pp.3, 2018, https://doi.org/10.1148/ryai.2021200157
  6. Investigation of Synthetic Magnetic Resonance Imaging Applied in the Evaluation of the Tumor Grade of Bladder Cancer vol.54, pp.6, 2018, https://doi.org/10.1002/jmri.27770
  7. Clinical feasibility of simultaneous multislice acceleration in knee MRI vol.82, pp.None, 2022, https://doi.org/10.1016/j.clinimag.2021.11.031