DOI QR코드

DOI QR Code

Self-Gated Late Gadolinium Enhancement at 7T to Image Rats with Reperfused Acute Myocardial Infarction

  • Wang, Lei (Molecular Imaging Center, West China Hospital of Sichuan University) ;
  • Chen, Yushu (Department of Radiology, West China Hospital of Sichuan University) ;
  • Zhang, Bing (Department of Radiology, West China Hospital of Sichuan University) ;
  • Chen, Wei (Department of Radiology, West China Hospital of Sichuan University) ;
  • Wang, Chunhua (Department of Radiology, West China Hospital of Sichuan University) ;
  • Song, Li (Molecular Imaging Center, West China Hospital of Sichuan University) ;
  • Xu, Ziqian (Department of Radiology, West China Hospital of Sichuan University) ;
  • Zheng, Jie (Mallinckrodt Institute of Radiology, Washington University School of Medicine in St. Louis) ;
  • Gao, Fabao (Department of Radiology, West China Hospital of Sichuan University)
  • Received : 2017.02.03
  • Accepted : 2017.07.28
  • Published : 2018.04.01

Abstract

Objective: A failed electrocardiography (ECG)-trigger often leads to a long acquisition time (TA) and deterioration in image quality. The purpose of this study was to evaluate and optimize the technique of self-gated (SG) cardiovascular magnetic resonance (CMR) for cardiac late gadolinium enhancement (LGE) imaging of rats with myocardial infarction/reperfusion. Materials and Methods: Cardiovascular magnetic resonance images of 10 rats were obtained using SG-LGE or ECG with respiration double-gating (ECG-RESP-gating) method at 7T to compare differences in image interference and TA between the two methods. A variety of flip angles (FA: $10^{\circ}-80^{\circ}$) and the number of repetitions (NR: 40, 80, 150, and 300) were investigated to determine optimal scan parameters of SG-LGE technique based on image quality score and contrast-to-noise ratio (CNR). Results: Self-gated late gadolinium enhancement allowed successful scan in 10 (100%) rats. However, only 4 (40%) rats were successfully scanned with the ECG-RESP-gating method. TAs with SG-LGE varied depending on NR used (TA: 41, 82, 154, and 307 seconds, corresponding to NR of 40, 80, 150, and 300, respectively). For the ECG-RESP-gating method, the average TA was 220 seconds. For SG-LGE images, CNR ($42.5{\pm}5.5$, $43.5{\pm}7.5$, $54{\pm}9$, $59.5{\pm}8.5$, $56{\pm}13$, $54{\pm}8$, and $41{\pm}9$) and image quality score ($1.85{\pm}0.75$, $2.20{\pm}0.83$, $2.85{\pm}0.37$, $3.85{\pm}0.52$, $2.8{\pm}0.51$, $2.45{\pm}0.76$, and $1.95{\pm}0.60$) were achieved with different FAs ($10^{\circ}$, $15^{\circ}$, $20^{\circ}$, $25^{\circ}$, $30^{\circ}$, $35^{\circ}$, and $40^{\circ}$, respectively). Optimal FAs of $20^{\circ}-30^{\circ}$ and NR of 80 were recommended. Conclusion: Self-gated technique can improve image quality of LGE without irregular ECG or respiration gating. Therefore, SG-LGE can be used an alternative method of ECG-RESP-gating.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China

References

  1. Vandsburger MH, Epstein FH. Emerging MRI methods in translational cardiovascular research. J Cardiovasc Transl Res 2011;4:477-492 https://doi.org/10.1007/s12265-011-9275-1
  2. Abascal JF, Montesinos P, Marinetto E, Pascau J, Desco M. Comparison of total variation with a motion estimation based compressed sensing approach for self-gated cardiac cine MRI in small animal studies. PLoS One 2014;9:e110594 https://doi.org/10.1371/journal.pone.0110594
  3. Paul J, Divkovic E, Wundrak S, Bernhardt P, Rottbauer W, Neumann H, et al. High-resolution respiratory self-gated golden angle cardiac MRI: comparison of self-gating methods in combination with k-t SPARSE SENSE. Magn Reson Med 2015;73:292-298 https://doi.org/10.1002/mrm.25102
  4. Yang Z, Berr SS, Gilson WD, Toufektsian MC, French BA. Simultaneous evaluation of infarct size and cardiac function in intact mice by contrast-enhanced cardiac magnetic resonance imaging reveals contractile dysfunction in noninfarcted regions early after myocardial infarction. Circulation 2004;109:1161-1167 https://doi.org/10.1161/01.CIR.0000118495.88442.32
  5. Motaal AG, Noorman N, de Graaf WL, Hoerr V, Florack LM, Nicolay K, et al. Functional imaging of murine hearts using accelerated self-gated UTE cine MRI. Int J Cardiovasc Imaging 2015;31:83-94 https://doi.org/10.1007/s10554-014-0531-8
  6. Vallée JP, Ivancevic MK, Nguyen D, Morel DR, Jaconi M. Current status of cardiac MRI in small animals. MAGMA 2004;17:149-156 https://doi.org/10.1007/s10334-004-0066-4
  7. Berry CJ, Thedens DR, Light-McGroary K, Miller JD, Kutschke W, Zimmerman KA, et al. Effects of deep sedation or general anesthesia on cardiac function in mice undergoing cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2009;11:16 https://doi.org/10.1186/1532-429X-11-16
  8. Constantinides C, Mean R, Janssen BJ. Effects of isoflurane anesthesia on the cardiovascular function of the C57BL/6 mouse. ILAR J 2011;52:e21-e31
  9. Kramer K, van Acker SA, Voss HP, Grimbergen JA, van der Vijgh WJ, Bast A. Use of telemetry to record electrocardiogram and heart rate in freely moving mice. J Pharmacol Toxicol Methods 1993;30:209-215 https://doi.org/10.1016/1056-8719(93)90019-B
  10. Wang CC, Huang TY. Self-gated PROPELLER-encoded cine cardiac imaging. Int J Cardiovasc Imaging 2012;28:1477-1485 https://doi.org/10.1007/s10554-011-9969-0
  11. Berk WA, Shea MJ, Crevey BJ. Bradycardic responses to vagally mediated bedside maneuvers in healthy volunteers. Am J Med 1991;90:725-729 https://doi.org/10.1016/0002-9343(91)90669-O
  12. Kapa S, Venkatachalam KL, Asirvatham SJ. The autonomic nervous system in cardiac electrophysiology: an elegant interaction and emerging concepts. Cardiol Rev 2010;18:275-284 https://doi.org/10.1097/CRD.0b013e3181ebb152
  13. Dimick RN, Hedlund LW, Herfkens RJ, Fram EK, Utz J. Optimizing electrocardiograph electrode placement for cardiac-gated magnetic resonance imaging. Invest Radiol 1987;22:17-22 https://doi.org/10.1097/00004424-198701000-00002
  14. Frauenrath T, Fuchs K, Dieringer MA, Ozerdem C, Patel N, Renz W, et al. Detailing the use of magnetohydrodynamic effects for synchronization of MRI with the cardiac cycle: a feasibility study. J Magn Reson Imaging 2012;36:364-372 https://doi.org/10.1002/jmri.23634
  15. Polson MJ, Barker AT, Gardiner S. The effect of rapid rise-time magnetic fields on the ECG of the rat. Clin Phys Physiol Meas 1982;3:231-234 https://doi.org/10.1088/0143-0815/3/3/008
  16. de Roquefeuil M, Vuissoz PA, Escanye JM, Felblinger J. Effect of physiological heart rate variability on quantitative T2 measurement with ECG-gated Fast Spin Echo (FSE) sequence and its retrospective correction. Magn Reson Imaging 2013;31:1559-1566 https://doi.org/10.1016/j.mri.2013.06.006
  17. Fischer A, Weick S, Ritter CO, Beer M, Wirth C, Hebestreit H, et al. SElf-gated Non-Contrast-Enhanced FUnctional Lung imaging (SENCEFUL) using a quasi-random fast low-angle shot (FLASH) sequence and proton MRI. NMR Biomed 2014;27:907-917 https://doi.org/10.1002/nbm.3134
  18. Hiba B, Richard N, Janier M, Croisille P. Cardiac and respiratory double self-gated cine MRI in the mouse at 7 T. Magn Reson Med 2006;55:506-513 https://doi.org/10.1002/mrm.20815
  19. Crowe ME, Larson AC, Zhang Q, Carr J, White RD, Li D, et al. Automated rectilinear self-gated cardiac cine imaging. Magn Reson Med 2004;52:782-788 https://doi.org/10.1002/mrm.20212
  20. Bovens SM, te Boekhorst BC, den Ouden K, van de Kolk KW, Nauerth A, Nederhoff MG, et al. Evaluation of infarcted murine heart function: comparison of prospectively triggered with self-gated MRI. NMR Biomed 2011;24:307-315 https://doi.org/10.1002/nbm.1593
  21. Hiba B, Richard N, Thibault H, Janier M. Cardiac and respiratory self-gated cine MRI in the mouse: comparison between radial and rectilinear techniques at 7T. Magn Reson Med 2007;58:745-753 https://doi.org/10.1002/mrm.21355
  22. Tham EB, Hung RW, Myers KA, Crawley C, Noga ML. Optimization of myocardial nulling in pediatric cardiac MRI. Pediatr Radiol 2012;42:431-439 https://doi.org/10.1007/s00247-011-2276-z
  23. Simonetti OP, Kim RJ, Fieno DS, Hillenbrand HB, Wu E, Bundy JM, et al. An improved MR imaging technique for the visualization of myocardial infarction. Radiology 2001;218:215-223 https://doi.org/10.1148/radiology.218.1.r01ja50215
  24. Juan LJ, Crean AM, Wintersperger BJ. Late gadolinium enhancement imaging in assessment of myocardial viability: techniques and clinical applications. Radiol Clin North Am 2015;53:397-411 https://doi.org/10.1016/j.rcl.2014.11.004
  25. Protti A, Sirker A, Shah AM, Botnar R. Late gadolinium enhancement of acute myocardial infarction in mice at 7T: cine-FLASH versus inversion recovery. J Magn Reson Imaging 2010;32:878-886 https://doi.org/10.1002/jmri.22325
  26. Brinegar C, Wu YJ, Foley LM, Hitchens TK, Ye Q, Ho C, et al. Real-time cardiac MRI without triggering, gating, or breath holding. Conf Proc IEEE Eng Med Biol Soc 2008;2008:3381-3384
  27. Ingle RR, Santos JM, Overall WR, McConnell MV, Hu BS, Nishimura DG. Self-gated fat-suppressed cardiac cine MRI. Magn Reson Med 2015;73:1764-1774 https://doi.org/10.1002/mrm.25291
  28. Krämer M, Herrmann KH, Biermann J, Freiburger S, Schwarzer M, Reichenbach JR. Self-gated cardiac Cine MRI of the rat on a clinical 3 T MRI system. NMR Biomed 2015;28:162-167 https://doi.org/10.1002/nbm.3234
  29. Kühn JP, Holmes JH, Brau AC, Iwadate Y, Hernando D, Reeder SB. Navigator flip angle optimization for free-breathing T1- weighted hepatobiliary phase imaging with gadoxetic acid. J Magn Reson Imaging 2014;40:1129-1136 https://doi.org/10.1002/jmri.24480
  30. Busse RF. Flip angle calculation for consistent contrast in spoiled gradient echo imaging. Magn Reson Med 2005;53:977-980 https://doi.org/10.1002/mrm.20420
  31. De Naeyer D, Verhulst J, Ceelen W, Segers P, De Deene Y, Verdonck P. Flip angle optimization for dynamic contrastenhanced MRI-studies with spoiled gradient echo pulse sequences. Phys Med Biol 2011;56:5373-5395 https://doi.org/10.1088/0031-9155/56/16/019
  32. Collins DJ, Padhani AR. Dynamic magnetic resonance imaging of tumor perfusion. Approaches and biomedical challenges. IEEE Eng Med Biol Mag 2004;23:65-83
  33. Tyler DJ, Hudsmith LE, Petersen SE, Francis JM, Weale P, Neubauer S, et al. Cardiac cine MR-imaging at 3T: FLASH vs SSFP. J Cardiovasc Magn Reson 2006;8:709-715 https://doi.org/10.1080/10976640600723797
  34. Zhang H, Ye Q, Zheng J, Schelbert EB, Hitchens TK, Ho C. Improve myocardial T1 measurement in rats with a new regression model: application to myocardial infarction and beyond. Magn Reson Med 2014;72:737-748 https://doi.org/10.1002/mrm.24988
  35. Arheden H, Saeed M, Higgins CB, Gao DW, Bremerich J, Wyttenbach R, et al. Measurement of the distribution volume of gadopentetate dimeglumine at echo-planar MR imaging to quantify myocardial infarction: comparison with 99mTc-DTPA autoradiography in rats. Radiology 1999;211:698-708 https://doi.org/10.1148/radiology.211.3.r99jn41698
  36. Klein C, Schmal TR, Nekolla SG, Schnackenburg B, Fleck E, Nagel E. Mechanism of late gadolinium enhancement in patients with acute myocardial infarction. J Cardiovasc Magn Reson 2007;9:653-658 https://doi.org/10.1080/10976640601105614

Cited by

  1. Guideline for Cardiovascular Magnetic Resonance Imaging from the Korean Society of Cardiovascular Imaging-Part 1: Standardized Protocol vol.3, pp.3, 2018, https://doi.org/10.22468/cvia.2019.00108
  2. Guideline for Cardiovascular Magnetic Resonance Imaging from the Korean Society of Cardiovascular Imaging-Part 1: Standardized Protocol vol.20, pp.9, 2018, https://doi.org/10.3348/kjr.2019.0398
  3. Guidelines for Cardiovascular Magnetic Resonance Imaging from the Korean Society of Cardiovascular Imaging-Part 2: Interpretation of Cine, Flow, and Angiography Data vol.3, pp.4, 2019, https://doi.org/10.22468/cvia.2019.00115
  4. Guidelines for Cardiovascular Magnetic Resonance Imaging from the Korean Society of Cardiovascular Imaging-Part 2: Interpretation of Cine, Flow, and Angiography Data vol.20, pp.11, 2019, https://doi.org/10.3348/kjr.2019.0407
  5. Guidelines for Cardiovascular Magnetic Resonance Imaging from Korean Society of Cardiovascular Imaging (KOSCI) - Part 1: Standardized Protocol vol.23, pp.4, 2018, https://doi.org/10.13104/imri.2019.23.4.296
  6. Guidelines for Cardiovascular Magnetic Resonance Imaging from the Korean Society of Cardiovascular Imaging (KOSCI) - Part 2: Interpretation of Cine, Flow, and Angiography Data vol.23, pp.4, 2018, https://doi.org/10.13104/imri.2019.23.4.316
  7. Emerging methods for the characterization of ischemic heart disease: ultrafast Doppler angiography, micro-CT, photon-counting CT, novel MRI and PET techniques, and artificial intelligence vol.5, pp.1, 2018, https://doi.org/10.1186/s41747-021-00207-3