DOI QR코드

DOI QR Code

Imaging Evaluation Following 90Y Radioembolization of Liver Tumors: What Radiologists Should Know

  • Joo, Ijin (Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine) ;
  • Kim, Hyo-Cheol (Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine) ;
  • Kim, Gyoung Min (Department of Nuclear Medicine, Seoul National University Hospital, Seoul National University College of Medicine) ;
  • Paeng, Jin Chul (Department of Radiology, Severance Hospital)
  • 투고 : 2017.07.23
  • 심사 : 2017.11.03
  • 발행 : 2018.04.01

초록

Radioembolization using beta-emitting yttrium-90 microspheres is being increasingly used for the treatment of primary and metastatic liver cancers. It is a form of intra-arterial brachytherapy which delivers intense radiation to liver tumors with little embolic effect; this mode of action results in unique post-treatment imaging findings. It is important to understand these imaging findings to avoid misinterpretation of tumor response and to determine further management of the disease. Herein, we discuss the current concepts for assessing tumor response, common post-treatment imaging features, and associated complications following radioembolization.

키워드

참고문헌

  1. Sangro B, Iñarrairaegui M, Bilbao JI. Radioembolization for hepatocellular carcinoma. J Hepatol 2012;56:464-473
  2. Lee EW, Alanis L, Cho SK, Saab S. Yttrium-90 selective internal radiation therapy with glass microspheres for hepatocellular carcinoma: current and updated literature review. Korean J Radiol 2016;17:472-488 https://doi.org/10.3348/kjr.2016.17.4.472
  3. Lanza E, Donadon M, Poretti D, Pedicini V, Tramarin M, Roncalli M, et al. Transarterial therapies for hepatocellular carcinoma. Liver Cancer 2016;6:27-33
  4. Fidelman N, Kerlan RK Jr. Transarterial chemoembolization and (90)Y radioembolization for hepatocellular carcinoma: review of current applications beyond intermediate-stage disease. AJR Am J Roentgenol 2015;205:742-752 https://doi.org/10.2214/AJR.15.14802
  5. Atassi B, Bangash AK, Bahrani A, Pizzi G, Lewandowski RJ, Ryu RK, et al. Multimodality imaging following 90Y radioembolization: a comprehensive review and pictorial essay. Radiographics 2008;28:81-99 https://doi.org/10.1148/rg.281065721
  6. Riaz A, Lewandowski RJ, Kulik LM, Mulcahy MF, Sato KT, Ryu RK, et al. Complications following radioembolization with yttrium-90 microspheres: a comprehensive literature review. J Vasc Interv Radiol 2009;20:1121-1130; quiz 1131 https://doi.org/10.1016/j.jvir.2009.05.030
  7. Coldwell D, Sangro B, Wasan H, Salem R, Kennedy A. General selection criteria of patients for radioembolization of liver tumors: an international working group report. Am J Clin Oncol 2011;34:337-341 https://doi.org/10.1097/COC.0b013e3181ec61bb
  8. Rosenbaum CE, Verkooijen HM, Lam MG, Smits ML, Koopman M, van Seeters T, et al. Radioembolization for treatment of salvage patients with colorectal cancer liver metastases: a systematic review. J Nucl Med 2013;54:1890-1895 https://doi.org/10.2967/jnumed.113.119545
  9. Kim HC. Radioembolization for the treatment of hepatocellular carcinoma. Clin Mol Hepatol 2017;23:109-114 https://doi.org/10.3350/cmh.2017.0004
  10. Kim DY, Han KH. Transarterial chemoembolization versus transarterial radioembolization in hepatocellular carcinoma: optimization of selecting treatment modality. Hepatol Int 2016;10:883-892 https://doi.org/10.1007/s12072-016-9722-9
  11. Kim HC. Role of C-arm cone-beam CT in chemoembolization for hepatocellular carcinoma. Korean J Radiol 2015;16:114-124 https://doi.org/10.3348/kjr.2015.16.1.114
  12. Borggreve AS, Landman AJEMC, Vissers CMJ, De Jong CD, Lam MGEH, Monninkhof EM, et al. Radioembolization: is prophylactic embolization of hepaticoenteric arteries necessary? A systematic review. Cardiovasc Intervent Radiol 2016;39:696-704 https://doi.org/10.1007/s00270-016-1310-9
  13. Camacho JC, Moncayo V, Kokabi N, Reavey HE, Galt JR, Yamada K, et al. (90)Y radioembolization: multimodality imaging pattern approach with angiographic correlation for optimized target therapy delivery. Radiographics 2015;35:1602-1618 https://doi.org/10.1148/rg.2015140314
  14. Kao YH, Hock Tan AE, Burgmans MC, Irani FG, Khoo LS, Gong Lo RH, et al. Image-guided personalized predictive dosimetry by artery-specific SPECT/CT partition modeling for safe and effective 90Y radioembolization. J Nucl Med 2012;53:559-566 https://doi.org/10.2967/jnumed.111.097469
  15. Roshan HR, Azarm A, Mahmoudian B, Islamian JP. Advances in SPECT for optimizing the liver tumors radioembolization using yttrium-90 microspheres. World J Nucl Med 2015;14:75-80 https://doi.org/10.4103/1450-1147.157120
  16. Braat AJ, Smits ML, Braat MN, van den Hoven AF, Prince JF, de Jong HW, et al. 90Y hepatic radioembolization: an update on current practice and recent developments. J Nucl Med 2015;56:1079-1087 https://doi.org/10.2967/jnumed.115.157446
  17. Uliel L, Royal HD, Darcy MD, Zuckerman DA, Sharma A, Saad NE. From the angio suite to the ${\gamma}$-camera: vascular mapping and 99mTc-MAA hepatic perfusion imaging before liver radioembolization--a comprehensive pictorial review. J Nucl Med 2012;53:1736-1747 https://doi.org/10.2967/jnumed.112.105361
  18. Kallini JR, Gabr A, Salem R, Lewandowski RJ. Transarterial radioembolization with yttrium-90 for the treatment of hepatocellular carcinoma. Adv Ther 2016;33:699-714 https://doi.org/10.1007/s12325-016-0324-7
  19. Riaz A, Gates VL, Atassi B, Lewandowski RJ, Mulcahy MF, Ryu RK, et al. Radiation segmentectomy: a novel approach to increase safety and efficacy of radioembolization. Int J Radiat Oncol Biol Phys 2011;79:163-171 https://doi.org/10.1016/j.ijrobp.2009.10.062
  20. Padia SA, Kwan SW, Roudsari B, Monsky WL, Coveler A, Harris WP. Superselective yttrium-90 radioembolization for hepatocellular carcinoma yields high response rates with minimal toxicity. J Vasc Interv Radiol 2014;25:1067-1073 https://doi.org/10.1016/j.jvir.2014.03.030
  21. Vouche M, Habib A, Ward TJ, Kim E, Kulik L, Ganger D, et al. Unresectable solitary hepatocellular carcinoma not amenable to radiofrequency ablation: multicenter radiology-pathology correlation and survival of radiation segmentectomy. Hepatology 2014;60:192-201 https://doi.org/10.1002/hep.27057
  22. Lewandowski RJ, Donahue L, Chokechanachaisakul A, Kulik L, Mouli S, Caicedo J, et al. (90) Y radiation lobectomy: outcomes following surgical resection in patients with hepatic tumors and small future liver remnant volumes. J Surg Oncol 2016;114:99-105 https://doi.org/10.1002/jso.24269
  23. Vouche M, Lewandowski RJ, Atassi R, Memon K, Gates VL, Ryu RK, et al. Radiation lobectomy: time-dependent analysis of future liver remnant volume in unresectable liver cancer as a bridge to resection. J Hepatol 2013;59:1029-1036 https://doi.org/10.1016/j.jhep.2013.06.015
  24. Lhommel R, Goffette P, Van den Eynde M, Jamar F, Pauwels S, Bilbao JI, et al. Yttrium-90 TOF PET scan demonstrates highresolution biodistribution after liver SIRT. Eur J Nucl Med Mol Imaging 2009;36:1696 https://doi.org/10.1007/s00259-009-1210-1
  25. Pasciak AS, Bourgeois AC, McKinney JM, Chang TT, Osborne DR, Acuff SN, et al. Radioembolization and the dynamic role of (90)Y PET/CT. Front Oncol 2014;4:38
  26. Bagni O, D'Arienzo M, Chiaramida P, Chiacchiararelli L, Cannas P, D'Agostini A, et al. 90Y-PET for the assessment of microsphere biodistribution after selective internal radiotherapy. Nucl Med Commun 2012;33:198-204 https://doi.org/10.1097/MNM.0b013e32834dfa58
  27. Fowler KJ, Maughan NM, Laforest R, Saad NE, Sharma A, Olsen J, et al. PET/MRI of hepatic 90Y microsphere deposition determines individual tumor response. Cardiovasc Intervent Radiol 2016;39:855-864 https://doi.org/10.1007/s00270-015-1285-y
  28. Cosimelli M, Golfieri R, Cagol PP, Carpanese L, Sciuto R, Maini CL, et al. Multi-centre phase II clinical trial of yttrium-90 resin microspheres alone in unresectable, chemotherapy refractory colorectal liver metastases. Br J Cancer 2010;103:324-331 https://doi.org/10.1038/sj.bjc.6605770
  29. Hoffmann RT, Paprottka PM, Schon A, Bamberg F, Haug A, Durr EM, et al. Transarterial hepatic yttrium-90 radioembolization in patients with unresectable intrahepatic cholangiocarcinoma: factors associated with prolonged survival. Cardiovasc Intervent Radiol 2012;35:105-116 https://doi.org/10.1007/s00270-011-0142-x
  30. Salem R, Lewandowski RJ, Mulcahy MF, Riaz A, Ryu RK, Ibrahim S, et al. Radioembolization for hepatocellular carcinoma using Yttrium-90 microspheres: a comprehensive report of long-term outcomes. Gastroenterology 2010;138:52-64 https://doi.org/10.1053/j.gastro.2009.09.006
  31. Keppke AL, Salem R, Reddy D, Huang J, Jin J, Larson AC, et al. Imaging of hepatocellular carcinoma after treatment with yttrium-90 microspheres. AJR Am J Roentgenol 2007;188:768-775 https://doi.org/10.2214/AJR.06.0706
  32. Miller FH, Keppke AL, Reddy D, Huang J, Jin J, Mulcahy MF, et al. Response of liver metastases after treatment with yttrium-90 microspheres: role of size, necrosis, and PET. AJR Am J Roentgenol 2007;188:776-783 https://doi.org/10.2214/AJR.06.0707
  33. Riaz A, Kulik L, Lewandowski RJ, Ryu RK, Giakoumis Spear G, Mulcahy MF, et al. Radiologic-pathologic correlation of hepatocellular carcinoma treated with internal radiation using yttrium-90 microspheres. Hepatology 2009;49:1185-1193 https://doi.org/10.1002/hep.22747
  34. Camacho JC, Kokabi N, Xing M, Prajapati HJ, El-Rayes B, Kim HS. Modified response evaluation criteria in solid tumors and European Association for The Study of the Liver criteria using delayed-phase imaging at an early time point predict survival in patients with unresectable intrahepatic cholangiocarcinoma following yttrium-90 radioembolization. J Vasc Interv Radiol 2014;25:256-265 https://doi.org/10.1016/j.jvir.2013.10.056
  35. Chapiro J, Duran R, Lin M, Schernthaner R, Lesage D, Wang Z, et al. Early survival prediction after intra-arterial therapies: a 3D quantitative MRI assessment of tumour response after TACE or radioembolization of colorectal cancer metastases to the liver. Eur Radiol 2015;25:1993-2003 https://doi.org/10.1007/s00330-015-3595-5
  36. Guo Y, Yaghmai V, Salem R, Lewandowski RJ, Nikolaidis P, Larson AC, et al. Imaging tumor response following liverdirected intra-arterial therapy. Abdom Imaging 2013;38:1286-1299 https://doi.org/10.1007/s00261-013-0017-5
  37. Singh P, Anil G. Yttrium-90 radioembolization of liver tumors: what do the images tell us? Cancer Imaging 2014;13:645-657
  38. Shady W, Sotirchos VS, Do RK, Pandit-Taskar N, Carrasquillo JA, Gonen M, et al. Surrogate imaging biomarkers of response of colorectal liver metastases after salvage radioembolization using 90Y-loaded resin microspheres. AJR Am J Roentgenol 2016;207:661-670 https://doi.org/10.2214/AJR.15.15202
  39. Bester L, Hobbins PG, Wang SC, Salem R. Imaging characteristics following 90yttrium microsphere treatment for unresectable liver cancer. J Med Imaging Radiat Oncol 2011;55:111-118 https://doi.org/10.1111/j.1754-9485.2011.02241.x
  40. Jiang T, Zhu AX, Sahani DV. Established and novel imaging biomarkers for assessing response to therapy in hepatocellular carcinoma. J Hepatol 2013;58:169-177 https://doi.org/10.1016/j.jhep.2012.08.022
  41. Taouli B, Koh DM. Diffusion-weighted MR imaging of the liver. Radiology 2010;254:47-66 https://doi.org/10.1148/radiol.09090021
  42. Kokabi N, Camacho JC, Xing M, Qiu D, Kitajima H, Mittal PK, et al. Apparent diffusion coefficient quantification as an early imaging biomarker of response and predictor of survival following yttrium-90 radioembolization for unresectable infiltrative hepatocellular carcinoma with portal vein thrombosis. Abdom Imaging 2014;39:969-978 https://doi.org/10.1007/s00261-014-0127-8
  43. Schmeel FC, Simon B, Sabet A, Luetkens JA, Träber F, Schmeel LC, et al. Diffusion-weighted magnetic resonance imaging predicts survival in patients with liver-predominant metastatic colorectal cancer shortly after selective internal radiation therapy. Eur Radiol 2017;27:966-975 https://doi.org/10.1007/s00330-016-4430-3
  44. Joo I, Lee JM, Han JK, Choi BI. Intravoxel incoherent motion diffusion-weighted MR imaging for monitoring the therapeutic efficacy of the vascular disrupting agent CKD-516 in rabbit VX2 liver tumors. Radiology 2014;272:417-426 https://doi.org/10.1148/radiol.14131165
  45. Koh DM, Collins DJ, Orton MR. Intravoxel incoherent motion in body diffusion-weighted MRI: reality and challenges. AJR Am J Roentgenol 2011;196:1351-1361 https://doi.org/10.2214/AJR.10.5515
  46. Yang SH, Lin J, Lu F, Han ZH, Fu CX, Lv P, et al. Evaluation of antiangiogenic and antiproliferative effects of sorafenib by sequential histology and intravoxel incoherent motion diffusion-weighted imaging in an orthotopic hepatocellular carcinoma xenograft model. J Magn Reson Imaging 2017;45:270-280 https://doi.org/10.1002/jmri.25344
  47. Pieper CC, Meyer C, Sprinkart AM, Block W, Ahmadzadehfar H, Schild HH, et al. The value of intravoxel incoherent motion model-based diffusion-weighted imaging for outcome prediction in resin-based radioembolization of breast cancer liver metastases. Onco Targets Ther 2016;9:4089-4098 https://doi.org/10.2147/OTT.S104770
  48. Pieper CC, Sprinkart AM, Meyer C, König R, Schild HH, Kukuk GM, et al. Evaluation of a simplified intravoxel incoherent motion (IVIM) analysis of diffusion-weighted imaging for prediction of tumor size changes and imaging response in breast cancer liver metastases undergoing radioembolization: a retrospective single center analysis. Medicine (Baltimore) 2016;95:e3275 https://doi.org/10.1097/MD.0000000000003275
  49. Memon K, Kulik L, Lewandowski RJ, Wang E, Ryu RK, Riaz A, et al. Alpha-fetoprotein response correlates with EASL response and survival in solitary hepatocellular carcinoma treated with transarterial therapies: a subgroup analysis. J Hepatol 2012;56:1112-1120 https://doi.org/10.1016/j.jhep.2011.11.020
  50. Hipps D, Ausania F, Manas DM, Rose JD, French JJ. Selective interarterial radiation therapy (SIRT) in colorectal liver metastases: how Do we monitor response? HPB Surg 2013;2013:570808
  51. Kallini JR, Miller FH, Gabr A, Salem R, Lewandowski RJ. Hepatic imaging following intra-arterial embolotherapy. Abdom Radiol (NY) 2016;41:600-616 https://doi.org/10.1007/s00261-016-0639-5
  52. Ibrahim SM, Nikolaidis P, Miller FH, Lewandowski RJ, Ryu RK, Sato KT, et al. Radiologic findings following Y90 radioembolization for primary liver malignancies. Abdom Imaging 2009;34:566-581 https://doi.org/10.1007/s00261-008-9454-y
  53. Bhangoo MS, Karnani DR, Hein PN, Giap H, Knowles H, Issa C, et al. Radioembolization with Yttrium-90 microspheres for patients with unresectable hepatocellular carcinoma. J Gastrointest Oncol 2015;6:469-478
  54. Park MJ, Kim SY, Yoon SM, Kim JH, Park SH, Lee SS, et al. Stereotactic body radiotherapy-induced arterial hypervascularity of non-tumorous hepatic parenchyma in patients with hepatocellular carcinoma: potential pitfalls in tumor response evaluation on multiphase computed tomography. PLoS One 2014;9:e90327 https://doi.org/10.1371/journal.pone.0090327
  55. Lock M, Malayeri AA, Mian OY, Mayr NA, Herman JM, Lo SS. Computed tomography imaging assessment of postexternal beam radiation changes of the liver. Future Oncol 2016;12:2729-2739 https://doi.org/10.2217/fon-2016-0165
  56. Herfarth KK, Hof H, Bahner ML, Lohr F, Höss A, van Kaick G, et al. Assessment of focal liver reaction by multiphasic CT after stereotactic single-dose radiotherapy of liver tumors. Int J Radiat Oncol Biol Phys 2003;57:444-451 https://doi.org/10.1016/S0360-3016(03)00586-8
  57. Marin D, Cappabianca S, Serra N, Sica A, Lassandro F, D'Angelo R, et al. CT appearance of hepatocellular carcinoma after locoregional treatments: a comprehensive review. Gastroenterol Res Pract 2015;2015:670965
  58. Kulik LM, Atassi B, van Holsbeeck L, Souman T, Lewandowski RJ, Mulcahy MF, et al. Yttrium-90 microspheres (TheraSphere) treatment of unresectable hepatocellular carcinoma: downstaging to resection, RFA and bridge to transplantation. J Surg Oncol 2006;94:572-586 https://doi.org/10.1002/jso.20609
  59. Braat AJ, Huijbregts JE, Molenaar IQ, Borel Rinkes IH, van den Bosch MA, Lam MG. Hepatic radioembolization as a bridge to liver surgery. Front Oncol 2014;4:199
  60. Prince JF, van den Hoven AF, van den Bosch MA, Elschot M, de Jong HW, Lam MG. Radiation-induced cholecystitis after hepatic radioembolization: do we need to take precautionary measures? J Vasc Interv Radiol 2014;25:1717-1723 https://doi.org/10.1016/j.jvir.2014.06.024
  61. Yu MH, Kim YJ, Park HS, Jung SI, Jeon HJ. Imaging patterns of intratumoral calcification in the abdominopelvic cavity. Korean J Radiol 2017;18:323-335 https://doi.org/10.3348/kjr.2017.18.2.323
  62. Sharma RA, Van Hazel GA, Morgan B, Berry DP, Blanshard K, Price D, et al. Radioembolization of liver metastases from colorectal cancer using yttrium-90 microspheres with concomitant systemic oxaliplatin, fluorouracil, and leucovorin chemotherapy. J Clin Oncol 2007;25:1099-1106 https://doi.org/10.1200/JCO.2006.08.7916
  63. Riaz A, Awais R, Salem R. Side effects of yttrium-90 radioembolization. Front Oncol 2014;4:198
  64. Gil-Alzugaray B, Chopitea A, Inarrairaegui M, Bilbao JI, Rodriguez-Fraile M, Rodriguez J, et al. Prognostic factors and prevention of radioembolization-induced liver disease. Hepatology 2013;57:1078-1087 https://doi.org/10.1002/hep.26191
  65. Hamoui N, Ryu RK. Hepatic radioembolization complicated by fulminant hepatic failure. Semin Intervent Radiol 2011;28:246-251 https://doi.org/10.1055/s-0031-1280674
  66. Kuo JC, Tazbirkova A, Allen R, Kosmider S, Gibbs P, Yip D. Serious hepatic complications of selective internal radiation therapy with yttrium-90 microsphere radioembolization for unresectable liver tumors. Asia Pac J Clin Oncol 2014;10:266-272 https://doi.org/10.1111/ajco.12229
  67. Wright CL, Werner JD, Tran JM, Gates VL, Rikabi AA, Shah MH, et al. Radiation pneumonitis following yttrium-90 radioembolization: case report and literature review. J Vasc Interv Radiol 2012;23:669-674 https://doi.org/10.1016/j.jvir.2012.01.059
  68. Padia SA, Lewandowski RJ, Johnson GE, Sze DY, Ward TJ, Gaba RC, et al. Radioembolization of hepatic malignancies: background, quality improvement guidelines, and future directions. J Vasc Interv Radiol 2017;28:1-15 https://doi.org/10.1016/j.jvir.2016.09.024
  69. Parakh S, Gananadha S, Allen R, Yip D. Cholecystitis after yttrium-90 resin microsphere radioembolization treatment: clinical and pathologic findings. Asian J Surg 2016;39:144-148 https://doi.org/10.1016/j.asjsur.2015.04.002
  70. Sag AA, Savin MA, Lal NR, Mehta RR. Yttrium-90 radioembolization of malignant tumors of the liver: gallbladder effects. AJR Am J Roentgenol 2014;202:1130-1135 https://doi.org/10.2214/AJR.13.10548
  71. Hickey R, Lewandowski RJ. Hepatic radioembolization complicated by radiation cholecystitis. Semin Intervent Radiol 2011;28:230-233 https://doi.org/10.1055/s-0031-1280671
  72. Choi JW, Yoo MY, Kim HC, Paeng JC, Kim YJ, Chung JW. Prophylactic temporary occlusion of the cystic artery using a fibered detachable coil during 90y radioembolization. Cardiovasc Intervent Radiol 2017;40:1624-1630 https://doi.org/10.1007/s00270-017-1688-z
  73. South CD, Meyer MM, Meis G, Kim EY, Thomas FB, Rikabi AA, et al. Yttrium-90 microsphere induced gastrointestinal tract ulceration. World J Surg Oncol 2008;6:93 https://doi.org/10.1186/1477-7819-6-93
  74. Kallini JR, Gabr A, Thorlund K, Balijepalli C, Ayres D, Kanters S. Comparison of the adverse event profile of $TheraSphere^{(R)}$ with $SIR-Spheres^{(R)}$ for the treatment of unresectable hepatocellular carcinoma: a systematic review. Cardiovasc Intervent Radiol 2017;40:1033-1043 https://doi.org/10.1007/s00270-017-1594-4
  75. Sun B, Lapetino SR, Diffalha SA, Yong S, Gaba RC, Bui JT, et al. Microvascular injury in persistent gastric ulcers after yttrium-90 microsphere radioembolization for liver malignancies. Hum Pathol 2016;50:11-14 https://doi.org/10.1016/j.humpath.2015.10.016
  76. Veloso N, Brandäo C, Gonçalves B, Costa L, Coimbra N, Jacome M, et al. Gastroduodenal ulceration following liver radioembolization with yttrium-90. Endoscopy 2013;45 Suppl 2 UCTN:E108-E109 https://doi.org/10.1055/s-0032-1326346
  77. Naymagon S, Warner RR, Patel K, Harpaz N, Machac J, Weintraub JL, et al. Gastroduodenal ulceration associated with radioembolization for the treatment of hepatic tumors: an institutional experience and review of the literature. Dig Dis Sci 2010;55:2450-2458 https://doi.org/10.1007/s10620-010-1156-y

피인용 문헌

  1. Imaging Neuroendocrine Hepatic Metastases Following 90Y-Radioembolization: Is It Time to Implement Routine Use of PET Molecular/Metabolic Probes? vol.42, pp.6, 2018, https://doi.org/10.1007/s00270-019-02186-w
  2. Comparison of Radioembolization and Sorafenib for the Treatment of Hepatocellular Carcinoma with Portal Vein Tumor Thrombosis: A Systematic Review and Meta-Analysis of Safety and Efficacy vol.20, pp.3, 2018, https://doi.org/10.3348/kjr.2018.0496
  3. Quantitative Imaging Biomarkers for 90Y Distribution on Bremsstrahlung SPECT After Resin-Based Radioembolization vol.60, pp.8, 2018, https://doi.org/10.2967/jnumed.118.219691
  4. Characteristics of Recent Articles Published in the Korean Journal of Radiology Based on the Citation Frequency vol.21, pp.12, 2020, https://doi.org/10.3348/kjr.2020.1322
  5. Evaluation of liver tumour response by imaging vol.2, pp.3, 2018, https://doi.org/10.1016/j.jhepr.2020.100100
  6. Selecting the Right Tool for the Right Job: Which Response Criteria Better Predicts Survival of Patients Treated with Transarterial Radioembolization? vol.14, pp.6, 2018, https://doi.org/10.5009/gnl20324
  7. Evaluation of qualitative and quantitative data of Y-90 imaging in SPECT/CT and PET/CT phantom studies vol.16, pp.2, 2021, https://doi.org/10.1371/journal.pone.0246848