DOI QR코드

DOI QR Code

Prostate Imaging-Reporting and Data System Version 2: Beyond Prostate Cancer Detection

  • Park, Sung Yoon (Department of Radiology, Yonsei University College of Medicine) ;
  • Cho, Nam Hoon (Department of Pathology, Yonsei University College of Medicine) ;
  • Jung, Dae Chul (Department of Radiology, Yonsei University College of Medicine) ;
  • Oh, Young Taik (Department of Radiology, Yonsei University College of Medicine)
  • 투고 : 2017.07.26
  • 심사 : 2017.10.02
  • 발행 : 2018.04.01

초록

The main purpose of Prostate Imaging-Reporting and Data System Version 2 (PI-RADSv2) is to effectively detect clinically significant prostate cancers (csPCa) using multiparametric magnetic resonance imaging. Since the first introduction of PI-RADSv2, researchers have validated its diagnostic performance in identifying csPCa, and these promising data have influenced biopsy and treatment schemes. However, in this article, we focused on the potential of PI-RADSv2 in relation to various aspects of PCa such as Gleason score, tumor volume, extraprostatic extension, lymph node metastasis, and postoperative biochemical recurrence, beyond prostate cancer detection.

키워드

참고문헌

  1. Park SY, Jung DC, Oh YT, Cho NH, Choi YD, Rha KH, et al. Prostate cancer: PI-RADS version 2 helps preoperatively predict clinically significant cancers. Radiology 2016;280:108-116 https://doi.org/10.1148/radiol.16151133
  2. Woo S, Suh CH, Kim SY, Cho JY, Kim SH. Diagnostic performance of prostate imaging reporting and data system version 2 for detection of prostate cancer: a systematic review and diagnostic meta-analysis. Eur Urol 2017;72:177-188 https://doi.org/10.1016/j.eururo.2017.01.042
  3. Zhang L, Tang M, Chen S, Lei X, Zhang X, Huan Y. A metaanalysis of use of prostate imaging reporting and data system version 2 (PI-RADS V2) with multiparametric MR imaging for the detection of prostate cancer. Eur Radiol 2017;27:5204- 5214 https://doi.org/10.1007/s00330-017-4843-7
  4. van As NJ, Norman AR, Thomas K, Khoo VS, Thompson A, Huddart RA, et al. Predicting the probability of deferred radical treatment for localised prostate cancer managed by active surveillance. Eur Urol 2008;54:1297-1305 https://doi.org/10.1016/j.eururo.2008.02.039
  5. Mehralivand S, Bednarova S, Shih JH, Mertan FV, Gaur S, Merino MJ, et al. Prospective evaluation of $PI-RADS^{TM}$ version 2 using the international society of urological pathology prostate cancer grade group system. J Urol 2017;198:583-590 https://doi.org/10.1016/j.juro.2017.03.131
  6. Martorana E, Pirola GM, Scialpi M, Micali S, Iseppi A, Bonetti LR, et al. Lesion volume predicts prostate cancer risk and aggressiveness: validation of its value alone and matched with prostate imaging reporting and data system score. BJU Int 2017;120:92-103 https://doi.org/10.1111/bju.13649
  7. Tan N, Lin WC, Khoshnoodi P, Asvadi NH, Yoshida J, Margolis DJ, et al. In-Bore 3-T MR-guided transrectal targeted prostate biopsy: prostate imaging reporting and data system version 2-based diagnostic performance for detection of prostate cancer. Radiology 2017;283:130-139 https://doi.org/10.1148/radiol.2016152827
  8. Washino S, Okochi T, Saito K, Konishi T, Hirai M, Kobayashi Y, et al. Combination of prostate imaging reporting and data system (PI-RADS) score and prostate-specific antigen (PSA) density predicts biopsy outcome in prostate biopsy naive patients. BJU Int 2017;119:225-233 https://doi.org/10.1111/bju.13465
  9. Baco E, Rud E, Eri LM, Moen G, Vlatkovic L, Svindland A, et al. A randomized controlled trial to assess and compare the outcomes of two-core prostate biopsy guided by fused magnetic resonance and transrectal ultrasound images and traditional 12-core systematic biopsy. Eur Urol 2016;69:149- 156 https://doi.org/10.1016/j.eururo.2015.03.041
  10. Seo JW, Shin SJ, Taik Oh Y, Jung DC, Cho NH, Choi YD, et al. PI-RADS version 2: detection of clinically significant cancer in patients with biopsy gleason score 6 prostate cancer. AJR Am J Roentgenol 2017;209:W1-W9 https://doi.org/10.2214/AJR.16.16981
  11. Abdollah F, Suardi N, Gallina A, Bianchi M, Tutolo M, Passoni N, et al. Extended pelvic lymph node dissection in prostate cancer: a 20-year audit in a single center. Ann Oncol 2013;24:1459-1466 https://doi.org/10.1093/annonc/mdt120
  12. Park JJ, Kim CK, Park SY, Park BK, Lee HM, Cho SW. Prostate cancer: role of pretreatment multiparametric 3-T MRI in predicting biochemical recurrence after radical prostatectomy. AJR Am J Roentgenol 2014;202:W459-W465 https://doi.org/10.2214/AJR.13.11381
  13. Weinreb JC, Barentsz JO, Choyke PL, Cornud F, Haider MA, Macura KJ, et al. PI-RADS prostate imaging - reporting and data system: 2015, version 2. Eur Urol 2016;69:16-40 https://doi.org/10.1016/j.eururo.2015.08.052
  14. Futterer JJ. Multiparametric MRI in the detection of clinically significant prostate cancer. Korean J Radiol 2017;18:597-606 https://doi.org/10.3348/kjr.2017.18.4.597
  15. Maas MC, Futterer JJ, Scheenen TW. Quantitative evaluation of computed high B value diffusion-weighted magnetic resonance imaging of the prostate. Invest Radiol 2013;48:779- 786 https://doi.org/10.1097/RLI.0b013e31829705bb
  16. Ueno Y, Takahashi S, Kitajima K, Kimura T, Aoki I, Kawakami F, et al. Computed diffusion-weighted imaging using 3-T magnetic resonance imaging for prostate cancer diagnosis. Eur Radiol 2013;23:3509-3516 https://doi.org/10.1007/s00330-013-2958-z
  17. Vargas HA, Akin O, Franiel T, Mazaheri Y, Zheng J, Moskowitz C, et al. Diffusion-weighted endorectal MR imaging at 3 T for prostate cancer: tumor detection and assessment of aggressiveness. Radiology 2011;259:775-784 https://doi.org/10.1148/radiol.11102066
  18. Chatterjee A, Watson G, Myint E, Sved P, McEntee M, Bourne R. Changes in epithelium, stroma, and lumen space correlate more strongly with gleason pattern and are stronger predictors of prostate ADC changes than cellularity metrics. Radiology 2015;277:751-762 https://doi.org/10.1148/radiol.2015142414
  19. Park SY, Shin SJ, Jung DC, Cho NH, Choi YD, Rha KH, et al. PI-RADS version 2: quantitative analysis aids reliable interpretation of diffusion-weighted imaging for prostate cancer. Eur Radiol 2017;27:2776-2783 https://doi.org/10.1007/s00330-016-4678-7
  20. Park SY, Oh YT, Jung DC, Cho NH, Choi YD, Rha KH, et al. Prediction of biochemical recurrence after radical prostatectomy with PI-RADS version 2 in prostate cancers: initial results. Eur Radiol 2016;26:2502-2509 https://doi.org/10.1007/s00330-015-4077-5
  21. Woo S, Kim SY, Lee J, Kim SH, Cho JY. PI-RADS version 2 for prediction of pathological downgrading after radical prostatectomy: a preliminary study in patients with biopsyproven Gleason Score 7 (3+4) prostate cancer. Eur Radiol 2016;26:3580-3587 https://doi.org/10.1007/s00330-016-4230-9
  22. Ploussard G, Epstein JI, Montironi R, Carroll PR, Wirth M, Grimm MO, et al. The contemporary concept of significant versus insignificant prostate cancer. Eur Urol 2011;60:291- 303 https://doi.org/10.1016/j.eururo.2011.05.006
  23. Vargas HA, Akin O, Shukla-Dave A, Zhang J, Zakian KL, Zheng J, et al. Performance characteristics of MR imaging in the evaluation of clinically low-risk prostate cancer: a prospective study. Radiology 2012;265:478-487 https://doi.org/10.1148/radiol.12120041
  24. Le JD, Tan N, Shkolyar E, Lu DY, Kwan L, Marks LS, et al. Multifocality and prostate cancer detection by multiparametric magnetic resonance imaging: correlation with whole-mount histopathology. Eur Urol 2015;67:569-576 https://doi.org/10.1016/j.eururo.2014.08.079
  25. Kitzing YX, Prando A, Varol C, Karczmar GS, Maclean F, Oto A. Benign conditions that mimic prostate carcinoma: MR imaging features with histopathologic correlation. Radiographics 2016;36:162-175 https://doi.org/10.1148/rg.2016150030
  26. Vargas HA, Hotker AM, Goldman DA, Moskowitz CS, Gondo T, Matsumoto K, et al. Updated prostate imaging reporting and data system (PIRADS v2) recommendations for the detection of clinically significant prostate cancer using multiparametric MRI: critical evaluation using whole-mount pathology as standard of reference. Eur Radiol 2016;26:1606-1612 https://doi.org/10.1007/s00330-015-4015-6
  27. Langer DL, van der Kwast TH, Evans AJ, Sun L, Yaffe MJ, Trachtenberg J, et al. Intermixed normal tissue within prostate cancer: effect on MR imaging measurements of apparent diffusion coefficient and T2--sparse versus dense cancers. Radiology 2008;249:900-908 https://doi.org/10.1148/radiol.2493080236
  28. Wolters T, Roobol MJ, van Leeuwen PJ, van den Bergh RC, Hoedemaeker RF, van Leenders GJ, et al. A critical analysis of the tumor volume threshold for clinically insignificant prostate cancer using a data set of a randomized screening trial. J Urol 2011;185:121-125 https://doi.org/10.1016/j.juro.2010.08.082
  29. Ting F, van Leeuwen PJ, Delprado W, Haynes AM, Brenner P, Stricker PD. Tumor volume in insignificant prostate cancer: Increasing the threshold is a safe approach to reduce overtreatment. Prostate 2015;75:1768-1773 https://doi.org/10.1002/pros.23062
  30. Kryvenko ON, Epstein JI. Definition of insignificant tumor volume of gleason score 3 + 3 = 6 (grade group 1) prostate cancer at radical prostatectomy-is it time to increase the threshold? J Urol 2016;196:1664-1669 https://doi.org/10.1016/j.juro.2016.06.013
  31. Kattan MW, Wheeler TM, Scardino PT. Postoperative nomogram for disease recurrence after radical prostatectomy for prostate cancer. J Clin Oncol 1999;17:1499-1507 https://doi.org/10.1200/JCO.1999.17.5.1499
  32. Mottet N, Bellmunt J, Bolla M, Briers E, Cumberbatch MG, De Santis M, et al. EAU-ESTRO-SIOG guidelines on prostate cancer. Part 1: screening, diagnosis, and local treatment with curative intent. Eur Urol 2017;71:618-629 https://doi.org/10.1016/j.eururo.2016.08.003
  33. Gupta RT, Spilseth B, Patel N, Brown AF, Yu J. Multiparametric prostate MRI: focus on T2-weighted imaging and role in staging of prostate cancer. Abdom Radiol (NY) 2016;41:831- 843 https://doi.org/10.1007/s00261-015-0579-5
  34. Kayat Bittencourt L, Litjens G, Hulsbergen-van de Kaa CA, Turkbey B, Gasparetto EL, Barentsz JO. Prostate cancer: the European society of urogenital radiology prostate imaging reporting and data system criteria for predicting extraprostatic extension by using 3-T multiparametric MR imaging. Radiology 2015;276:479-489 https://doi.org/10.1148/radiol.15141412
  35. Lim CS, McInnes MDF, Lim RS, Breau RH, Flood TA, Krishna S, et al. Prognostic value of Prostate Imaging and Data Reporting System (PI-RADS) v. 2 assessment categories 4 and 5 compared to histopathological outcomes after radical prostatectomy. J Magn Reson Imaging 2017;46:257-266 https://doi.org/10.1002/jmri.25539
  36. Krishna S, Lim CS, McInnes MDF, Flood TA, Shabana WM, Lim RS, et al. Evaluation of MRI for diagnosis of extraprostatic extension in prostate cancer. J Magn Reson Imaging 2018;47:176-185 https://doi.org/10.1002/jmri.25729
  37. Matsuoka Y, Ishioka J, Tanaka H, Kimura T, Yoshida S, Saito K, et al. Impact of the Prostate Imaging Reporting and Data System, Version 2, on MRI diagnosis for extracapsular extension of prostate cancer. AJR Am J Roentgenol 2017;209:W76-W84 https://doi.org/10.2214/AJR.16.17163
  38. McMahon CJ, Rofsky NM, Pedrosa I. Lymphatic metastases from pelvic tumors: anatomic classification, characterization, and staging. Radiology 2010;254:31-46 https://doi.org/10.1148/radiol.2541090361
  39. Hövels AM, Heesakkers RA, Adang EM, Jager GJ, Strum S, Hoogeveen YL, et al. The diagnostic accuracy of CT and MRI in the staging of pelvic lymph nodes in patients with prostate cancer: a meta-analysis. Clin Radiol 2008;63:387-395 https://doi.org/10.1016/j.crad.2007.05.022
  40. Briganti A, Abdollah F, Nini A, Suardi N, Gallina A, Capitanio U, et al. Performance characteristics of computed tomography in detecting lymph node metastases in contemporary patients with prostate cancer treated with extended pelvic lymph node dissection. Eur Urol 2012;61:1132-1138 https://doi.org/10.1016/j.eururo.2011.11.008
  41. Harisinghani MG, Barentsz J, Hahn PF, Deserno WM, Tabatabaei S, van de Kaa CH, et al. Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N Engl J Med 2003;348:2491-2499 https://doi.org/10.1056/NEJMoa022749
  42. Thoeny HC, Triantafyllou M, Birkhaeuser FD, Froehlich JM, Tshering DW, Binser T, et al. Combined ultrasmall superparamagnetic particles of iron oxide-enhanced and diffusion-weighted magnetic resonance imaging reliably detect pelvic lymph node metastases in normal-sized nodes of bladder and prostate cancer patients. Eur Urol 2009;55:761- 769 https://doi.org/10.1016/j.eururo.2008.12.034
  43. Birkhäuser FD, Studer UE, Froehlich JM, Triantafyllou M, Bains LJ, Petralia G, et al. Combined ultrasmall superparamagnetic particles of iron oxide-enhanced and diffusion-weighted magnetic resonance imaging facilitates detection of metastases in normal-sized pelvic lymph nodes of patients with bladder and prostate cancer. Eur Urol 2013;64:953-960 https://doi.org/10.1016/j.eururo.2013.07.032
  44. Vag T, Heck MM, Beer AJ, Souvatzoglou M, Weirich G, Holzapfel K, et al. Preoperative lymph node staging in patients with primary prostate cancer: comparison and correlation of quantitative imaging parameters in diffusionweighted imaging and 11C-choline PET/CT. Eur Radiol 2014;24:1821-1826 https://doi.org/10.1007/s00330-014-3240-8
  45. Herlemann A, Wenter V, Kretschmer A, Thierfelder KM, Bartenstein P, Faber C, et al. 68Ga-PSMA positron emission tomography/computed tomography provides accurate staging of lymph node regions prior to lymph node dissection in patients with prostate cancer. Eur Urol 2016;70:553-557 https://doi.org/10.1016/j.eururo.2015.12.051
  46. Hovels AM, Heesakkers RA, Adang EM, Jager GJ, Barentsz JO. Cost-analysis of staging methods for lymph nodes in patients with prostate cancer: MRI with a lymph node-specific contrast agent compared to pelvic lymph node dissection or CT. Eur Radiol 2004;14:1707-1712
  47. Briganti A, Larcher A, Abdollah F, Capitanio U, Gallina A, Suardi N, et al. Updated nomogram predicting lymph node invasion in patients with prostate cancer undergoing extended pelvic lymph node dissection: the essential importance of percentage of positive cores. Eur Urol 2012;61:480-487 https://doi.org/10.1016/j.eururo.2011.10.044
  48. Cagiannos I, Karakiewicz P, Eastham JA, Ohori M, Rabbani F, Gerigk C, et al. A preoperative nomogram identifying decreased risk of positive pelvic lymph nodes in patients with prostate cancer. J Urol 2003;170:1798-1803 https://doi.org/10.1097/01.ju.0000091805.98960.13
  49. Kim KH, Lim SK, Kim HY, Han WK, Choi YD, Chung BH, et al. Yonsei nomogram to predict lymph node invasion in Asian men with prostate cancer during robotic era. BJU Int 2014;113:598-604 https://doi.org/10.1111/bju.12280
  50. Pano B, Sebastia C, Bunesch L, Mestres J, Salvador R, Macias NG, et al. Pathways of lymphatic spread in male urogenital pelvic malignancies. Radiographics 2011;31:135-160 https://doi.org/10.1148/rg.311105072
  51. Zhang J, Hricak H, Shukla-Dave A, Akin O, Ishill NM, Carlino LJ, et al. Clinical stage T1c prostate cancer: evaluation with endorectal MR imaging and MR spectroscopic imaging. Radiology 2009;253:425-434 https://doi.org/10.1148/radiol.2532081390
  52. Park SY, Shin SJ, Jung DC, Cho NH, Choi YD, Rha KH, et al. PIRADS version 2: preoperative role in the detection of normalsized pelvic lymph node metastasis in prostate cancer. Eur J Radiol 2017;91:22-28 https://doi.org/10.1016/j.ejrad.2017.03.009
  53. Fuchsjäger MH, Pucar D, Zelefsky MJ, Zhang Z, Mo Q, Ben- Porat LS, et al. Predicting post-external beam radiation therapy PSA relapse of prostate cancer using pretreatment MRI. Int J Radiat Oncol Biol Phys 2010;78:743-750 https://doi.org/10.1016/j.ijrobp.2009.08.040
  54. Zhang YD, Wu CJ, Bao ML, Li H, Wang XN, Liu XS, et al. MRbased prognostic nomogram for prostate cancer after radical prostatectomy. J Magn Reson Imaging 2017;45:586-596 https://doi.org/10.1002/jmri.25441

피인용 문헌

  1. Prostate Imaging Reporting and Data System in prostate cancer staging and planning for radical prostatectomy vol.14, pp.2, 2018, https://doi.org/10.5114/wiitm.2019.83869
  2. Preoperative PI-RADS Version 2 scores helps improve accuracy of clinical nomograms for predicting pelvic lymph node metastasis at radical prostatectomy vol.23, pp.1, 2018, https://doi.org/10.1038/s41391-019-0164-z
  3. Effect of observation size and apparent diffusion coefficient (ADC) value in PI-RADS v2.1 assessment category 4 and 5 observations compared to adverse pathological outcomes vol.30, pp.8, 2020, https://doi.org/10.1007/s00330-020-06725-9
  4. Postoperative Biochemical Failure in Patients With PI-RADS Category 4 or 5 Prostate Cancers: Risk Stratification According to Zonal Location of an Index Lesion vol.215, pp.4, 2018, https://doi.org/10.2214/ajr.19.22653