References
- Palmerini T, Biondi-Zoccai G, Della Riva D, et al. Stent thrombosis with drug-eluting stents: is the paradigm shifting? J Am Coll Cardiol 2013;62:1915-21. https://doi.org/10.1016/j.jacc.2013.08.725
- Kereiakes DJ, Onuma Y, Serruys PW, Stone GW. Bioresorbable vascular scaffolds for coronary revascularization. Circulation 2016;134:168-82. https://doi.org/10.1161/CIRCULATIONAHA.116.021539
- Capodanno D, Angiolillo DJ. Antiplatelet therapy after implantation of bioresorbable vascular scaffolds: a review of the published data, practical recommendations, and future directions. JACC Cardiovasc Interv 2017;10:425-37. https://doi.org/10.1016/j.jcin.2016.12.279
- Capodanno D. Bioresorbable scaffolds: clinical outcomes and considerations. Interv Cardiol Clin 2016;5:357-63.
- Capodanno D, Gori T, Nef H, et al. Percutaneous coronary intervention with everolimus-eluting bioresorbable vascular scaffolds in routine clinical practice: early and midterm outcomes from the European multicentre GHOST-EU registry. EuroIntervention 2015;10:1144-53. https://doi.org/10.4244/EIJY14M07_11
- Serruys PW, Chevalier B, Dudek D, et al. A bioresorbable everolimus-eluting scaffold versus a metallic everolimus-eluting stent for ischaemic heart disease caused by de-novo native coronary artery lesions (ABSORB II): an interim 1-year analysis of clinical and procedural secondary outcomes from a randomised controlled trial. Lancet 2015;385:43-54. https://doi.org/10.1016/S0140-6736(14)61455-0
- Kimura T, Kozuma K, Tanabe K, et al. A randomized trial evaluating everolimus-eluting Absorb bioresorbable scaffolds vs. everolimus-eluting metallic stents in patients with coronary artery disease: ABSORB Japan. Eur Heart J 2015;36:3332-42. https://doi.org/10.1093/eurheartj/ehv435
- Gao R, Yang Y, Han Y, et al. Bioresorbable vascular scaffolds versus metallic stents in patients with coronary artery disease: ABSORB China Trial. J Am Coll Cardiol 2015;66:2298-309. https://doi.org/10.1016/j.jacc.2015.09.054
- Ellis SG, Kereiakes DJ, Metzger DC, et al. Everolimus-eluting bioresorbable scaffolds for coronary artery disease. N Engl J Med 2015;373:1905-15. https://doi.org/10.1056/NEJMoa1509038
- Cassese S, Byrne RA, Ndrepepa G, et al. Everolimus-eluting bioresorbable vascular scaffolds versus everolimus-eluting metallic stents: a meta-analysis of randomised controlled trials. Lancet 2016;387:537-44. https://doi.org/10.1016/S0140-6736(15)00979-4
- Stone GW, Gao R, Kimura T, et al. 1-year outcomes with the Absorb bioresorbable scaffold in patients with coronary artery disease: a patient-level, pooled meta-analysis. Lancet 2016;387:1277-89. https://doi.org/10.1016/S0140-6736(15)01039-9
- Serruys PW, Chevalier B, Sotomi Y, et al. Comparison of an everolimus-eluting bioresorbable scaffold with an everolimus-eluting metallic stent for the treatment of coronary artery stenosis (ABSORB II): a 3 year, randomised, controlled, single-blind, multicentre clinical trial. Lancet 2016;388:2479-91. https://doi.org/10.1016/S0140-6736(16)32050-5
- Wykrzykowska JJ, Kraak RP, Hofma SH, et al. Bioresorbable scaffolds versus metallic stents in routine PCI. N Engl J Med 2017;376:2319-28. https://doi.org/10.1056/NEJMoa1614954
- Ali ZA, Serruys PW, Kimura T, et al. 2-year outcomes with the Absorb bioresorbable scaffold for treatment of coronary artery disease: a systematic review and meta-analysis of seven randomised trials with an individual patient data substudy. Lancet 2017;390:760-72. https://doi.org/10.1016/S0140-6736(17)31470-8
- Nef HM, Wiebe J, Foin N, et al. A new novolimus-eluting bioresorbable coronary scaffold: present status and future clinical perspectives. Int J Cardiol 2017;227:127-33. https://doi.org/10.1016/j.ijcard.2016.11.033
- Verheye S, Ormiston JA, Stewart J, et al. A next-generation bioresorbable coronary scaffold system: from bench to first clinical evaluation: 6- and 12-month clinical and multimodality imaging results. JACC Cardiovasc Interv 2014;7:89-99. https://doi.org/10.1016/j.jcin.2013.07.007
- Abizaid A, Costa RA, Schofer J, et al. Serial multimodality imaging and 2-year clinical outcomes of the novel DESolve novolimus-eluting bioresorbable coronary scaffold system for the treatment of single de novo coronary lesions. JACC Cardiovasc Interv 2016;9:565-74.
- Haude M, Erbel R, Erne P, et al. Safety and performance of the DRug-Eluting Absorbable Metal Scaffold (DREAMS) in patients with de novo coronary lesions: 3-year results of the prospective, multicentre, firstin-man BIOSOLVE-I trial. EuroIntervention 2016;12:e160-6. https://doi.org/10.4244/EIJ-D-15-00371
- Haude M, Erbel R, Erne P, et al. Safety and performance of the drug-eluting absorbable metal scaffold (DREAMS) in patients with de-novo coronary lesions: 12 month results of the prospective, multicentre, first-in-man BIOSOLVE-I trial. Lancet 2013;381:836-44. https://doi.org/10.1016/S0140-6736(12)61765-6
- Fajadet J, Haude M, Joner M, et al. Magmaris preliminary recommendation upon commercial launch: a consensus from the expert panel on 14 April 2016. EuroIntervention 2016;12:828-33. https://doi.org/10.4244/EIJV12I7A137
- Haude M, Ince H, Abizaid A, et al. Safety and performance of the second-generation drug-eluting absorbable metal scaffold in patients with de-novo coronary artery lesions (BIOSOLVE-II): 6 month results of a prospective, multicentre, non-randomised, first-in-man trial. Lancet 2016;387:31-9. https://doi.org/10.1016/S0140-6736(15)00447-X
- Haude M, Ince H, Abizaid A, et al. Sustained safety and performance of the second-generation drugeluting absorbable metal scaffold in patients with de novo coronary lesions: 12-month clinical results and angiographic findings of the BIOSOLVE-II first-in-man trial. Eur Heart J 2016;37:2701-9. https://doi.org/10.1093/eurheartj/ehw196
- Haude M, Ince H, Kische S, et al. Sustained safety and clinical performance of a drug-eluting absorbable metal scaffold up to 24 months: pooled outcomes of BIOSOLVE-II and BIOSOLVE-III. EuroIntervention 2017;13:432-9. https://doi.org/10.4244/EIJ-D-17-00254
- Seth A, Onuma Y, Costa R, et al. First-in-human evaluation of a novel poly-L-lactide based sirolimuseluting bioresorbable vascular scaffold for the treatment of de novo native coronary artery lesions: MeRes-1 trial. EuroIntervention 2017;13:415-23. https://doi.org/10.4244/EIJ-D-17-00306
- Tenekecioglu E, Serruys PW, Onuma Y, et al. Randomized comparison of Absorb bioresorbable vascular scaffold and Mirage microfiber sirolimus-eluting scaffold using multimodality imaging. JACC Cardiovasc Interv 2017;10:1115-30. https://doi.org/10.1016/j.jcin.2017.03.015
- Zhang YJ, Wang XZ, Fu G, et al. Clinical and multimodality imaging results at 6 months of a bioresorbable sirolimus-eluting scaffold for patients with single de novo coronary artery lesions: the NeoVas first-inman trial. EuroIntervention 2016;12:1279-87. https://doi.org/10.4244/EIJV12I10A209
- Wu Y, Shen L, Ge L, et al. Six-month outcomes of the XINSORB bioresorbable sirolimus-eluting scaffold in treating single de novo lesions in human coronary artery. Catheter Cardiovasc Interv 2016;87 Suppl 1:630-7. https://doi.org/10.1002/ccd.26404
Cited by
- Commentary: Why Metallic Stents Remain the Worst Type of Endovascular Device, Except for All the Others vol.25, pp.6, 2018, https://doi.org/10.1177/1526602818806858
- Everolimus-eluting bioresorbable vascular scaffolds: learning from the past to improve the future vol.67, pp.4, 2018, https://doi.org/10.23736/s0026-4725.19.04900-4
- Biocompatible Polymer Materials with Antimicrobial Properties for Preparation of Stents vol.9, pp.11, 2018, https://doi.org/10.3390/nano9111548
- Bioresorbable Vascular Scaffolds—Dead End or Still a Rough Diamond? vol.8, pp.12, 2018, https://doi.org/10.3390/jcm8122167
- The Development of Design and Manufacture Techniques for Bioresorbable Coronary Artery Stents vol.12, pp.8, 2018, https://doi.org/10.3390/mi12080990
- Solvent-cast direct-writing as a fabrication strategy for radiopaque stents vol.48, pp.no.pb, 2021, https://doi.org/10.1016/j.addma.2021.102392