Acknowledgement
Supported by : Keimyung University Dongsan Medical Center
References
- Annunziato F, Cosmi L, Liotta F, Maggi E, Romagnani S. Type 17 T helper cells-origins, features and possible roles in rheumatic disease. Nat Rev Rheumatol 2009;5:325-331. https://doi.org/10.1038/nrrheum.2009.80
- Pasare C, Medzhitov R. Toll-like receptors: linking innate and adaptive immunity. Adv Exp Med Biol 2005;560:11-18.
- Radstake TR, Roelofs MF, Jenniskens YM, et al. Expression of toll-like receptors 2 and 4 in rheumatoid synovial tissue and regulation by proinflammatory cytokines interleukin-12 and interleukin-18 via interferon-gamma. Arthritis Rheum 2004;50:3856-3865. https://doi.org/10.1002/art.20678
- Ospelt C, Brentano F, Rengel Y, et al. Overexpression of toll-like receptors 3 and 4 in synovial tissue from patients with early rheumatoid arthritis: toll-like receptor expression in early and longstanding arthritis. Arthritis Rheum 2008;58:3684-3692. https://doi.org/10.1002/art.24140
- Davis ML, LeVan TD, Yu F, et al. Associations of toll-like receptor (TLR)-4 single nucleotide polymorphisms and rheumatoid arthritis disease progression: an observational cohort study. Int Immunopharmacol 2015;24:346-352. https://doi.org/10.1016/j.intimp.2014.12.030
- Bagchi D, Bagchi M, Stohs SJ, et al. Free radicals and grape seed proanthocyanidin extract: importance in human health and disease prevention. Toxicology 2000;148:187-197. https://doi.org/10.1016/S0300-483X(00)00210-9
- Gabetta B, Fuzzati N, Griffini A, et al. Characterization of proanthocyanidins from grape seeds. Fitoterapia 2000;71:162-175. https://doi.org/10.1016/S0367-326X(99)00161-6
- Fine AM. Oligomeric proanthocyanidin complexes: history, structure, and phytopharmaceutical applications. Altern Med Rev 2000;5:144-151.
- Zhang XY, Li WG, Wu YJ, Bai DC, Liu NF. Proanthocyanidin from grape seeds enhances doxorubicin-induced antitumor effect and reverses drug resistance in doxorubicin-resistant K562/DOX cells. Can J Physiol Pharmacol 2005;83:309-318. https://doi.org/10.1139/y05-018
- Li WG, Zhang XY, Wu YJ, Tian X. Anti-inflammatory effect and mechanism of proanthocyanidins from grape seeds. Acta Pharmacol Sin 2001;22:1117-1120.
- Li XL, Cai YQ, Qin H, Wu YJ. Therapeutic effect and mechanism of proanthocyanidins from grape seeds in rats with TNBS-induced ulcerative colitis. Can J Physiol Pharmacol 2008;86:841-849. https://doi.org/10.1139/Y08-089
- Meeran SM, Vaid M, Punathil T, Katiyar SK. Dietary grape seed proanthocyanidins inhibit 12-O-tetradecanoyl phorbol-13-acetate-caused skin tumor promotion in 7,12-dimethylbenz[a]anthracene-initiated mouse skin, which is associated with the inhibition of inflammatory responses. Carcinogenesis 2009;30:520-528. https://doi.org/10.1093/carcin/bgp019
- Cho ML, Heo YJ, Park MK, et al. Grape seed proanthocyanidin extract (GSPE) attenuates collagen-induced arthritis. Immunol Lett 2009;124:102-110. https://doi.org/10.1016/j.imlet.2009.05.001
- Aletaha D, Neogi T, Silman AJ, et al. 2010 Rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis Rheum 2010;62:2569-2581. https://doi.org/10.1002/art.27584
- Pierer M, Wagner U, Rossol M, Ibrahim S. Toll-like receptor 4 is involved in inflammatory and joint destructive pathways in collagen-induced arthritis in DBA1J mice. PLoS One 2011;6:e23539. https://doi.org/10.1371/journal.pone.0023539
- Abdollahi-Roodsaz S, Joosten LA, Roelofs MF, et al. Inhibition of Toll-like receptor 4 breaks the inflammatory loop in autoimmune destructive arthritis. Arthritis Rheum 2007;56:2957-2967. https://doi.org/10.1002/art.22848
- Bravo L. Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance. Nutr Rev 1998;56:317-333.
- Bagchi D, Garg A, Krohn RL, Bagchi M, Tran MX, Stohs SJ. Oxygen free radical scavenging abilities of vitamins C and E, and a grape seed proanthocyanidin extract in vitro. Res Commun Mol Pathol Pharmacol 1997;95:179-189.
- Chacon MR, Ceperuelo-Mallafre V, Maymo-Masip E, et al. Grape-seed procyanidins modulate inflammation on human differentiated adipocytes in vitro. Cytokine 2009;47:137-142. https://doi.org/10.1016/j.cyto.2009.06.001
- Kim H, Kim JY, Song HS, Park KU, Mun KC, Ha E. Grape seed proanthocyanidin extract inhibits interleukin-17-induced interleukin-6 production via MAPK pathway in human pulmonary epithelial cells. Naunyn Schmiedebergs Arch Pharmacol 2011;383:555-562. https://doi.org/10.1007/s00210-011-0633-y
- Park JS, Park MK, Oh HJ, et al. Grape-seed proanthocyanidin extract as suppressors of bone destruction in inflammatory autoimmune arthritis. PLoS One 2012;7:e51377. https://doi.org/10.1371/journal.pone.0051377
- Jhun JY, Moon SJ, Yoon BY, et al. Grape seed proanthocyanidin extract-mediated regulation of STAT3 proteins contributes to Treg differentiation and attenuates inflammation in a murine model of obesity-associated arthritis. PLoS One 2013;8:e78843. https://doi.org/10.1371/journal.pone.0078843
- Choi EM. Oxidative status of DBA/1J mice with type II collagen-induced arthritis. J Appl Toxicol 2007;27:472-481. https://doi.org/10.1002/jat.1228
- McCubbin MD, Hou G, Abrams GD, Dick R, Zhang Z, Brewer GJ. Tetrathiomolybdate is effective in a mouse model of arthritis. J Rheumatol 2006;33:2501-2506.
- Gelderman KA, Hultqvist M, Pizzolla A, et al. Macrophages suppress T cell responses and arthritis development in mice by producing reactive oxygen species. J Clin Invest 2007;117:3020-3028. https://doi.org/10.1172/JCI31935
- Park MK, Park JS, Cho ML, et al. Grape seed proanthocyanidin extract (GSPE) differentially regulates Foxp3(+) regulatory and IL-17(+) pathogenic T cell in autoimmune arthritis. Immunol Lett 2011;135:50-58. https://doi.org/10.1016/j.imlet.2010.09.011
- Ahmad SF, Zoheir KM, Abdel-Hamied HE, et al. Grape seed proanthocyanidin extract has potent anti-arthritic effects on collagen-induced arthritis by modifying the T cell balance. Int Immunopharmacol 2013;17:79-87. https://doi.org/10.1016/j.intimp.2013.05.026
- Medzhitov R, Preston-Hurlburt P, Janeway CA Jr. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 1997;388:394-397. https://doi.org/10.1038/41131
- Sadanaga A, Nakashima H, Akahoshi M, et al. Protection against autoimmune nephritis in MyD88-deficient MRL/lpr mice. Arthritis Rheum 2007;56:1618-1628. https://doi.org/10.1002/art.22571
- Kowalski ML, Wolska A, Grzegorczyk J, et al. Increased responsiveness to toll-like receptor 4 stimulation in peripheral blood mononuclear cells from patients with recent onset rheumatoid arthritis. Mediators Inflamm 2008;2008:132732.
- Chovanova L, Vlcek M, Krskova K, et al. Increased production of IL-6 and IL-17 in lipopolysaccharide-stimulated peripheral mononuclears from patients with rheumatoid arthritis. Gen Physiol Biophys 2013;32:395-404.
- Tang CH, Hsu CJ, Yang WH, Fong YC. Lipoteichoic acid enhances IL-6 production in human synovial fibroblasts via TLR2 receptor, PKCdelta and c-Src dependent pathways. Biochem Pharmacol 2010;79:1648-1657. https://doi.org/10.1016/j.bcp.2010.01.025
- Lorenz W, Buhrmann C, Mobasheri A, Lueders C, Shakibaei M. Bacterial lipopolysaccharides form procollagen-endotoxin complexes that trigger cartilage inflammation and degeneration: implications for the development of rheumatoid arthritis. Arthritis Res Ther 2013;15:R111. https://doi.org/10.1186/ar4291
- Radstake TR, Franke B, Hanssen S, et al. The Toll-like receptor 4 Asp299Gly functional variant is associated with decreased rheumatoid arthritis disease susceptibility but does not influence disease severity and/or outcome. Arthritis Rheum 2004;50:999-1001. https://doi.org/10.1002/art.20114
- Yang H, Wei C, Li Q, et al. Association of TLR4 gene non-missense single nucleotide polymorphisms with rheumatoid arthritis in Chinese Han population. Rheumatol Int 2013;33:1283-1288. https://doi.org/10.1007/s00296-012-2536-8
- Palsson-McDermott EM, O'Neill LA. Signal transduction by the lipopolysaccharide receptor, Toll-like receptor-4. Immunology 2004;113:153-162. https://doi.org/10.1111/j.1365-2567.2004.01976.x
- Bartok B, Firestein GS. Fibroblast-like synoviocytes: key effector cells in rheumatoid arthritis. Immunol Rev 2010;233:233-255. https://doi.org/10.1111/j.0105-2896.2009.00859.x
- Huang QQ, Pope RM. The role of toll-like receptors in rheumatoid arthritis. Curr Rheumatol Rep 2009;11:357-364. https://doi.org/10.1007/s11926-009-0051-z
- Davignon JL, Hayder M, Baron M, et al. Targeting monocytes/macrophages in the treatment of rheumatoid arthritis. Rheumatology (Oxford) 2013;52:590-598. https://doi.org/10.1093/rheumatology/kes304
Cited by
- Procyanidins Mitigate Osteoarthritis Pathogenesis by, at Least in Part, Suppressing Vascular Endothelial Growth Factor Signaling vol.17, pp.12, 2018, https://doi.org/10.3390/ijms17122065
- Beneficial Effects of Potentilla discolor Bunge Water Extract on Inflammatory Cytokines Release and Gut Microbiota in High-Fat Diet and Streptozotocin-Induced Type 2 Diabetic Mice vol.11, pp.3, 2018, https://doi.org/10.3390/nu11030670
- Polysaccharide of Atractylodes macrocephala Koidz Enhances Cytokine Secretion by Stimulating the TLR4-MyD88-NF-κB Signaling Pathway in the Mouse Spleen vol.22, pp.9, 2019, https://doi.org/10.1089/jmf.2018.4393
- Grape-Derived Polyphenols Ameliorate Stress-Induced Depression by Regulating Synaptic Plasticity vol.68, pp.7, 2018, https://doi.org/10.1021/acs.jafc.9b01970
- Inhibitory role of long non‐coding RNA OIP5‐AS1 in rheumatoid arthritis progression through the microRNA‐448-paraoxonase 1-toll‐like receptor 3-nuclear factor κB axis vol.105, pp.10, 2018, https://doi.org/10.1113/ep088608
- Fraxetin inhibits interleukin-1β-induced apoptosis, inflammation, and matrix degradation in chondrocytes and protects rat cartilage in vivo vol.28, pp.12, 2018, https://doi.org/10.1016/j.jsps.2020.09.016
- The efficacy of berries against lipopolysaccharide-induced inflammation: A review vol.117, pp.None, 2018, https://doi.org/10.1016/j.tifs.2021.01.015
- Astragalus Polysaccharides and Saponins Alleviate Liver Injury and Regulate Gut Microbiota in Alcohol Liver Disease Mice vol.10, pp.11, 2018, https://doi.org/10.3390/foods10112688