DOI QR코드

DOI QR Code

How to tackle congestion in acute heart failure

  • Received : 2017.11.15
  • Accepted : 2017.12.03
  • Published : 2018.05.01

Abstract

Acute heart failure is a common complication of chronic heart failure and is associated with a high risk for subsequent mortality and morbidity. In 90% of case acute heart failure is the resultant of congestion, a manifestation of fluid build-up due to increased filling pressures. As residual congestion at discharge following an acute heart failure episodes is one of the strongest predictors of poor outcome, the goal of therapy should be to resolve congestion completely. Important to comprehend is that increased cardiovascular filling pressures are not solely the resultant of intravascular volume excess but can also be induced by a decreased venous capacitance. This review article focusses on the pathophysiology, diagnoses, and treatment of congestion in acute heart failure. A clear distinction is made between states of volume overload (intravascular volume excess) or volume redistribution (decreased venous capacitance) contributing to congestion in acute heart failure.

Keywords

Acknowledgement

Supported by : Research Foundation-Flanders

References

  1. Gheorghiade M, Pang PS. Acute heart failure syndromes. J Am Coll Cardiol 2009;53:557-573. https://doi.org/10.1016/j.jacc.2008.10.041
  2. Adams KF Jr, Fonarow GC, Emerman CL, et al. Characteristics and outcomes of patients hospitalized for heart failure in the United States: rationale, design, and preliminary observations from the first 100,000 cases in the Acute Decompensated Heart Failure National Registry (ADHERE). Am Heart J 2005;149:209-216. https://doi.org/10.1016/j.ahj.2004.08.005
  3. Go AS, Mozaffarian D, Roger VL, et al. Heart disease and stroke statistics: 2013 update. A report from the American Heart Association. Circulation 2013;127:e6-e245. https://doi.org/10.1161/CIR.0b013e31828124ad
  4. Fang J, Mensah GA, Croft JB, Keenan NL. Heart failure-related hospitalization in the U.S., 1979 to 2004. J Am Coll Cardiol 2008;52:428-434. https://doi.org/10.1016/j.jacc.2008.03.061
  5. Cotter G, Kaluski E, Stangl K, et al. The hemodynamic and neurohormonal effects of low doses of tezosentan (an endothelin A/B receptor antagonist) in patients with acute heart failure. Eur J Heart Fail 2004;6:601-609. https://doi.org/10.1016/j.ejheart.2004.05.004
  6. Giamouzis G, Butler J, Starling RC, et al. Impact of dopamine infusion on renal function in hospitalized heart failure patients: results of the Dopamine in Acute Decompensated Heart Failure (DAD-HF) Trial. J Card Fail 2010;16:922-930. https://doi.org/10.1016/j.cardfail.2010.07.246
  7. Konstam MA, Gheorghiade M, Burnett JC Jr, et al. Effects of oral tolvaptan in patients hospitalized for worsening heart failure: the EVEREST Outcome Trial. JAMA 2007;297:1319-1331. https://doi.org/10.1001/jama.297.12.1319
  8. Massie BM, O'Connor CM, Metra M, et al. Rolofylline, an adenosine A1-receptor antagonist, in acute heart failure. N Engl J Med 2010;363:1419-1428. https://doi.org/10.1056/NEJMoa0912613
  9. McMurray JJ, Teerlink JR, Cotter G, et al. Effects of tezosentan on symptoms and clinical outcomes in patients with acute heart failure: the VERITAS randomized controlled trials. JAMA 2007;298:2009-2019. https://doi.org/10.1001/jama.298.17.2009
  10. O'Connor CM, Starling RC, Hernandez AF, et al. Effect of nesiritide in patients with acute decompensated heart failure. N Engl J Med 2011;365:32-43. https://doi.org/10.1056/NEJMoa1100171
  11. McMurray JJ, Adamopoulos S, Anker SD, et al. ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: the task force for the diagnosis and treatment of acute and chronic heart failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail 2012;14:803-869. https://doi.org/10.1093/eurjhf/hfs105
  12. Yancy CW, Jessup M, Bozkurt B, et al. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol 2013;62:e147-e239. https://doi.org/10.1016/j.jacc.2013.05.019
  13. Kociol RD, McNulty SE, Hernandez AF, et al. Markers of decongestion, dyspnea relief, and clinical outcomes among patients hospitalized with acute heart failure. Circ Heart Fail 2013;6:240-245. https://doi.org/10.1161/CIRCHEARTFAILURE.112.969246
  14. Mentz RJ, O'Connor CM. Pathophysiology and clinical evaluation of acute heart failure. Nat Rev Cardiol 2016;13:28-35. https://doi.org/10.1038/nrcardio.2015.134
  15. Zile MR, Bennett TD, St John Sutton M, et al. Transition from chronic compensated to acute decompensated heart failure: pathophysiological insights obtained from continuous monitoring of intracardiac pressures. Circulation 2008;118:1433-1441. https://doi.org/10.1161/CIRCULATIONAHA.108.783910
  16. Mullens W, Verbrugge FH, Nijst P, Tang WHW. Renal sodium avidity in heart failure: from pathophysiology to treatment strategies. Eur Heart J 2017;38:1872-1882. https://doi.org/10.1093/eurheartj/ehx035
  17. Nijst P, Verbrugge FH, Grieten L, et al. The pathophysiological role of interstitial sodium in heart failure. J Am Coll Cardiol 2015;65:378-388. https://doi.org/10.1016/j.jacc.2014.11.025
  18. Gelman S. Venous function and central venous pressure: a physiologic story. Anesthesiology 2008;108:735-748. https://doi.org/10.1097/ALN.0b013e3181672607
  19. Greenway CV. Role of splanchnic venous system in overall cardiovascular homeostasis. Fed Proc 1983;42:1678-1684.
  20. Miller WL, Mullan BP. Understanding the heterogeneity in volume overload and fluid distribution in decompensated heart failure is key to optimal volume management: role for blood volume quantitation. JACC Heart Fail 2014;2:298-305. https://doi.org/10.1016/j.jchf.2014.02.007
  21. Chaudhry SI, Wang Y, Concato J, Gill TM, Krumholz HM. Patterns of weight change preceding hospitalization for heart failure. Circulation 2007;116:1549-1554. https://doi.org/10.1161/CIRCULATIONAHA.107.690768
  22. Verbrugge FH, Dupont M, Steels P, et al. Abdominal contributions to cardiorenal dysfunction in congestive heart failure. J Am Coll Cardiol 2013;62:485-495. https://doi.org/10.1016/j.jacc.2013.04.070
  23. Androne AS, Hryniewicz K, Hudaihed A, Mancini D, Lamanca J, Katz SD. Relation of unrecognized hypervolemia in chronic heart failure to clinical status, hemodynamics, and patient outcomes. Am J Cardiol 2004;93:1254-1259. https://doi.org/10.1016/j.amjcard.2004.01.070
  24. Greenway CV, Lister GE. Capacitance effects and blood reservoir function in the splanchnic vascular bed during non-hypotensive haemorrhage and blood volume expansion in anaesthetized cats. J Physiol 1974;237:279-294. https://doi.org/10.1113/jphysiol.1974.sp010482
  25. Fallick C, Sobotka PA, Dunlap ME. Sympathetically mediated changes in capacitance: redistribution of the venous reservoir as a cause of decompensation. Circ Heart Fail 2011;4:669-675. https://doi.org/10.1161/CIRCHEARTFAILURE.111.961789
  26. Davis KL, Laine GA, Geissler HJ, Mehlhorn U, Brennan M, Allen SJ. Effects of myocardial edema on the development of myocardial interstitial fibrosis. Microcirculation 2000;7:269-280. https://doi.org/10.1111/j.1549-8719.2000.tb00127.x
  27. Desai KV, Laine GA, Stewart RH, et al. Mechanics of the left ventricular myocardial interstitium: effects of acute and chronic myocardial edema. Am J Physiol Heart Circ Physiol 2008;294:H2428-H2434. https://doi.org/10.1152/ajpheart.00860.2007
  28. Davis KL, Mehlhorn U, Laine GA, Allen SJ. Myocardial edema, left ventricular function, and pulmonary hypertension. J Appl Physiol (1985) 1995;78:132-137. https://doi.org/10.1152/jappl.1995.78.1.132
  29. Mullens W, Abrahams Z, Francis GS, et al. Importance of venous congestion for worsening of renal function in advanced decompensated heart failure. J Am Coll Cardiol 2009;53:589-596. https://doi.org/10.1016/j.jacc.2008.05.068
  30. Damman K, van Deursen VM, Navis G, Voors AA, van Veldhuisen DJ, Hillege HL. Increased central venous pressure is associated with impaired renal function and mortality in a broad spectrum of patients with cardiovascular disease. J Am Coll Cardiol 2009;53:582-588. https://doi.org/10.1016/j.jacc.2008.08.080
  31. Nijst P, Martens P, Dupont M, Tang WHW, Mullens W. Intrarenal flow alterations during transition from euvolemia to intravascular volume expansion in heart failure patients. JACC Heart Fail 2017;5:672-681. https://doi.org/10.1016/j.jchf.2017.05.006
  32. Adamson PB, Smith AL, Abraham WT, et al. Continuous autonomic assessment in patients with symptomatic heart failure: prognostic value of heart rate variability measured by an implanted cardiac resynchronization device. Circulation 2004;110:2389-2394. https://doi.org/10.1161/01.CIR.0000139841.42454.78
  33. Mullens W, Abrahams Z, Skouri HN, et al. Elevated intra-abdominal pressure in acute decompensated heart failure: a potential contributor to worsening renal function? J Am Coll Cardiol 2008;51:300-306. https://doi.org/10.1016/j.jacc.2007.09.043
  34. Colombo PC, Doran AC, Onat D, et al. Venous congestion, endothelial and neurohormonal activation in acute decompensated heart failure: cause or effect? Curr Heart Fail Rep 2015;12:215-222. https://doi.org/10.1007/s11897-015-0254-8
  35. Binanay C, Califf RM, Hasselblad V, et al. Evaluation study of congestive heart failure and pulmonary artery catheterization effectiveness: the ESCAPE trial. JAMA 2005;294:1625-1633. https://doi.org/10.1001/jama.294.13.1625
  36. Drazner MH, Hamilton MA, Fonarow G, Creaser J, Flavell C, Stevenson LW. Relationship between right and left-sided filling pressures in 1000 patients with advanced heart failure. J Heart Lung Transplant 1999;18:1126-1132. https://doi.org/10.1016/S1053-2498(99)00070-4
  37. Capomolla S, Ceresa M, Pinna G, et al. Echo-Doppler and clinical evaluations to define hemodynamic profile in patients with chronic heart failure: accuracy and influence on therapeutic management. Eur J Heart Fail 2005;7:624-630. https://doi.org/10.1016/j.ejheart.2004.07.013
  38. Rohde LE, Palombini DV, Polanczyk CA, Goldraich LA, Clausell N. A hemodynamically oriented echocardiography-based strategy in the treatment of congestive heart failure. J Card Fail 2007;13:618-625. https://doi.org/10.1016/j.cardfail.2007.05.003
  39. Francis GS, Felker GM, Tang WH. A test in context: critical evaluation of natriuretic peptide testing in heart failure. J Am Coll Cardiol 2016;67:330-337.
  40. Verbrugge FH, Grieten L, Mullens W. New insights into combinational drug therapy to manage congestion in heart failure. Curr Heart Fail Rep 2014;11:1-9. https://doi.org/10.1007/s11897-013-0174-4
  41. Guyton AC, Prather J, Scheel K, McGehee J. Interstitial fluid pressure. IV. Its effect on fluid movement through the capillary wall. Circ Res 1966;19:1022-1030. https://doi.org/10.1161/01.RES.19.6.1022
  42. ter Maaten JM, Valente MA, Damman K, Hillege HL, Navis G, Voors AA. Diuretic response in acute heart failure-pathophysiology, evaluation, and therapy. Nat Rev Cardiol 2015;12:184-192. https://doi.org/10.1038/nrcardio.2014.215
  43. Fonarow GC, Corday E; ADHERE Scientific Advisory Committee. Overview of acutely decompensated congestive heart failure (ADHF): a report from the ADHERE registry. Heart Fail Rev 2004;9:179-185.
  44. Felker GM, Lee KL, Bull DA, et al. Diuretic strategies in patients with acute decompensated heart failure. N Engl J Med 2011;364:797-805. https://doi.org/10.1056/NEJMoa1005419
  45. Matsue Y, Damman K, Voors AA, et al. Time-to-furosemide treatment and mortality in patients hospitalized with acute heart failure. J Am Coll Cardiol 2017;69:3042-3051. https://doi.org/10.1016/j.jacc.2017.04.042
  46. Martens P, Verbrugge FH, Nijst P, Dupont M, Mullens W. Changes in loop diuretic dose and outcome after cardiac resynchronization therapy in patients with heart failure and reduced left ventricular ejection fractions. Am J Cardiol 2017;120:267-273. https://doi.org/10.1016/j.amjcard.2017.04.021
  47. Jentzer JC, DeWald TA, Hernandez AF. Combination of loop diuretics with thiazide-type diuretics in heart failure. J Am Coll Cardiol 2010;56:1527-1534. https://doi.org/10.1016/j.jacc.2010.06.034
  48. Kim GH. Long-term adaptation of renal ion transporters to chronic diuretic treatment. Am J Nephrol 2004;24:595-605. https://doi.org/10.1159/000082314
  49. Verbrugge FH, Steels P, Grieten L, Nijst P, Tang WH, Mullens W. Hyponatremia in acute decompensated heart failure: depletion versus dilution. J Am Coll Cardiol 2015;65:480-492. https://doi.org/10.1016/j.jacc.2014.12.010
  50. Martens P, Nijst P, Mullens W. Current approach to decongestive therapy in acute heart failure. Curr Heart Fail Rep 2015;12:367-378. https://doi.org/10.1007/s11897-015-0273-5
  51. Butler J, Anstrom KJ, Felker GM, et al. Efficacy and safety of spironolactone in acute heart failure: the ATHENA-HF randomized clinical trial. JAMA Cardiol 2017;2:950-958. https://doi.org/10.1001/jamacardio.2017.2198
  52. Verbrugge FH, Dupont M, Bertrand PB, et al. Determinants and impact of the natriuretic response to diuretic therapy in heart failure with reduced ejection fraction and volume overload. Acta Cardiol 2015;70:265-273. https://doi.org/10.1080/AC.70.3.3080630
  53. Martens P, Mathieu C, Verbrugge FH. Promise of SGLT2 inhibitors in heart failure: diabetes and beyond. Curr Treat Options Cardiovasc Med 2017;19:23. https://doi.org/10.1007/s11936-017-0522-x
  54. Neal B, Perkovic V, Mahaffey KW, et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med 2017;377:644-657. https://doi.org/10.1056/NEJMoa1611925
  55. Zinman B, Wanner C, Lachin JM, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med 2015;373:2117-2128. https://doi.org/10.1056/NEJMoa1504720
  56. Costanzo MR, Ronco C, Abraham WT, et al. Extracorporeal ultrafiltration for fluid overload in heart failure: current status and prospects for further research. J Am Coll Cardiol 2017;69:2428-2445.
  57. Lala A, McNulty SE, Mentz RJ, et al. Relief and recurrence of congestion during and after hospitalization for acute heart failure: insights from Diuretic Optimization Strategy Evaluation in Acute decompensated Heart Failure (DOSE-AHF) and Cardiorenal Rescue Study in acute decompensated Heart Failure (CARESS-HF). Circ Heart Fail 2015;8:741-748. https://doi.org/10.1161/CIRCHEARTFAILURE.114.001957
  58. Costanzo MR, Stevenson LW, Adamson PB, et al. Interventions linked to decreased heart failure hospitalizations during ambulatory pulmonary artery pressure monitoring. JACC Heart Fail 2016;4:333-344. https://doi.org/10.1016/j.jchf.2015.11.011
  59. Testani JM, Chen J, McCauley BD, Kimmel SE, Shannon RP. Potential effects of aggressive decongestion during the treatment of decompensated heart failure on renal function and survival. Circulation 2010;122:265-272. https://doi.org/10.1161/CIRCULATIONAHA.109.933275
  60. Greene SJ, Gheorghiade M, Vaduganathan M, et al. Haemoconcentration, renal function, and post-discharge outcomes among patients hospitalized for heart failure with reduced ejection fraction: insights from the EVEREST trial. Eur J Heart Fail 2013;15:1401-1411. https://doi.org/10.1093/eurjhf/hft110
  61. Testani JM, Brisco MA, Chen J, McCauley BD, Parikh CR, Tang WH. Timing of hemoconcentration during treatment of acute decompensated heart failure and subsequent survival: importance of sustained decongestion. J Am Coll Cardiol 2013;62:516-524. https://doi.org/10.1016/j.jacc.2013.05.027
  62. van der Meer P, Postmus D, Ponikowski P, et al. The predictive value of short-term changes in hemoglobin concentration in patients presenting with acute decompensated heart failure. J Am Coll Cardiol 2013;61:1973-1981. https://doi.org/10.1016/j.jacc.2012.12.050
  63. Katz SD. In search of euvolemia in heart failure. JACC Heart Fail 2014;2:306-307. https://doi.org/10.1016/j.jchf.2014.02.006
  64. Ponikowski P, Voors AA, Anker SD, et al. 2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Kardiol Pol 2016;74:1037-1147. https://doi.org/10.5603/KP.2016.0141
  65. Mullens W, Abrahams Z, Francis GS, et al. Sodium nitroprusside for advanced low-output heart failure. J Am Coll Cardiol 2008;52:200-207. https://doi.org/10.1016/j.jacc.2008.02.083
  66. On bedresting in heart failure. Lancet 1990;336:975-976. https://doi.org/10.1016/0140-6736(90)92427-J
  67. Lucas C, Johnson W, Hamilton MA, et al. Freedom from congestion predicts good survival despite previous class IV symptoms of heart failure. Am Heart J 2000;140:840-847. https://doi.org/10.1067/mhj.2000.110933
  68. Morley D, Brozena SC. Assessing risk by hemodynamic profile in patients awaiting cardiac transplantation. Am J Cardiol 1994;73:379-383. https://doi.org/10.1016/0002-9149(94)90012-4
  69. Singh A, Laribi S, Teerlink JR, Mebazaa A. Agents with vasodilator properties in acute heart failure. Eur Heart J 2017;38:317-325. https://doi.org/10.1093/eurheartj/ehv755
  70. Packer M, O'Connor C, McMurray JJV, et al. Effect of ularitide on cardiovascular mortality in acute heart failure. N Engl J Med 2017;376:1956-1964. https://doi.org/10.1056/NEJMoa1601895
  71. Verbrugge FH, Dupont M, Finucan M, et al. Response and tolerance to oral vasodilator up-titration after intravenous vasodilator therapy in advanced decompensated heart failure. Eur J Heart Fail 2015;17:956-963. https://doi.org/10.1002/ejhf.324
  72. Stevenson LW, Zile M, Bennett TD, et al. Chronic ambulatory intracardiac pressures and future heart failure events. Circ Heart Fail 2010;3:580-587. https://doi.org/10.1161/CIRCHEARTFAILURE.109.923300
  73. Gheorghiade M, Vaduganathan M, Fonarow GC, Bonow RO. Rehospitalization for heart failure: problems and perspectives. J Am Coll Cardiol 2013;61:391-403. https://doi.org/10.1016/j.jacc.2012.09.038
  74. Fonarow GC, Abraham WT, Albert NM, et al. Association between performance measures and clinical outcomes for patients hospitalized with heart failure. JAMA 2007;297:61-70. https://doi.org/10.1001/jama.297.1.61
  75. Kula AJ, Hanberg JS, Wilson FP, et al. Influence of titration of neurohormonal antagonists and blood pressure reduction on renal function and decongestion in decompensated heart failure. Circ Heart Fail 2016;9:e002333. https://doi.org/10.1161/CIRCHEARTFAILURE.115.002333

Cited by

  1. Update on heart failure management and future directions vol.34, pp.1, 2018, https://doi.org/10.3904/kjim.2018.428
  2. New drugs in preclinical and early stage clinical development in the treatment of heart failure vol.28, pp.1, 2019, https://doi.org/10.1080/13543784.2019.1551357
  3. Population Pharmacokinetics and Pharmacodynamics Modeling of Torasemide and Furosemide After Oral Repeated Administration in Healthy Dogs vol.7, pp.None, 2018, https://doi.org/10.3389/fvets.2020.00151
  4. Distinct clinical phenotypes of congestion in acute heart failure: characteristics, treatment response, and outcomes vol.7, pp.6, 2018, https://doi.org/10.1002/ehf2.12973
  5. Proposal for New Classification and Practical Use of Diuretics According to Their Effects on the Serum Chloride Concentration: Rationale Based on the “Chloride Theory” vol.9, pp.2, 2020, https://doi.org/10.1007/s40119-020-00172-9
  6. The use of diuretics in chronic heart failure. Position paper of the Russian Heart Failure Society vol.60, pp.12, 2021, https://doi.org/10.18087/cardio.2020.12.n1427
  7. Use of novel non‐invasive techniques and biomarkers to guide outpatient management of fluid overload and reduce hospital readmission: systematic review and meta‐analysis vol.8, pp.5, 2018, https://doi.org/10.1002/ehf2.13510
  8. Detecting subclinical congestion in stage A/B PRE‐HEART failure: a glimpse into the future? vol.23, pp.11, 2018, https://doi.org/10.1002/ejhf.2366