Acknowledgement
Grant : Development of functionalized hydrogel scaffold based on medical grade biomaterials with 30% or less of molecular weight reduction
Supported by : NRF, KEIT
References
- Langton CM, Njeh CF, Hodgskinson R, Currey JD. Prediction of mechanical properties of the human calcaneus by broadband ultrasonic attenuation. Bone. 1996;18:495-503. https://doi.org/10.1016/8756-3282(96)00086-5
- Adipurnama I, Yang MC, Ciach T, Butruk-Raszeja B. Surface modification and endothelialization of polyurethane for vascular tissue engineering applications: a review. Biomater Sci. 2016;5:22-37.
- Chen C, Bang S, Cho Y, Lee S, Lee I, Zhang S, Noh I. Research trends in biomimetic medical materials for tissue engineering: 3D bioprinting, surface modification, nano/micro-technology and clinical aspects in tissue engineering of cartilage and bone. Biomater Res. 2016;20:10. https://doi.org/10.1186/s40824-016-0057-3
- Damodaran VB, Murthy NS. Bio-inspired strategies for designing antifouling biomaterials. Biomater Res. 2016;20:18. https://doi.org/10.1186/s40824-016-0064-4
- Han JW, Shin YS, Kim JJ, Son HS. Comparison of in vivo antibacterial and antithrombotic activities of two types of pulmonary artery catheters in pig. Biomater Res. 2017;21:23. https://doi.org/10.1186/s40824-017-0109-3
- Ye L, Zhang Y, Wang Q, Zhou X, Yang B, Ji F, Dong D, Gao L, Cui Y, Yao F. Physical cross-linking starch-based zwitterionic hydrogel exhibiting excellent biocompatibility, protein resistance, and biodegradability. ACS Appl Mater Interfaces. 2016;8:15710-23. https://doi.org/10.1021/acsami.6b03098
- Kwon HJ, Lee Y, Phuong LT, Seon GM, Kim E, Park JC, Yoon H, Park KD. Zwitterionic sulfobetaine polymer-immobilized surface by simple tyrosinase-mediated grafting for enhanced antifouling property. Acta Biomater. 2017;61:169-79. https://doi.org/10.1016/j.actbio.2017.08.007
- Hu Y, Yang G, Liang B, Fang L, Ma G, Zhu Q, Chen S, Ye X. The fabrication of superlow protein absorption zwitterionic coating by electrochemically mediated atom transfer radical polymerization and its application. Acta Biomater. 2015;13:142-9. https://doi.org/10.1016/j.actbio.2014.11.023
- BY Y, Zheng J, Chang Y, Sin MC, Chang CH, Higuchi A, Sun YM. Surface zwitterionization of titanium for a general bio-inert control of plasma proteins, blood cells, tissue cells, and bacteria. Langmuir. 2014;30:7502-12. https://doi.org/10.1021/la500917s
- Quintana R, Janczewski D, Vasantha VA, Jana S, Lee SS, Parra-Velandia FJ, Guo S, Parthiban A, Teo SL, Vancso GJ. Sulfobetaine-based polymer brushes in marine environment: is there an effect of the polymerizable group on the antifouling performance? Colloids Surf B. 2014;120:118-24. https://doi.org/10.1016/j.colsurfb.2014.04.012
- Zhang Z, Chao T, Liu L, Cheng G, Ratner BD, Jiang S. Zwitterionic hydrogels: an in vivo implantation study. J Biomater Sci Polym Ed. 2009;20:1845-59. https://doi.org/10.1163/156856208X386444
- Liu F, Hashim NA, Liu Y, Abed MRM, Li K. Progress in the production and modification of PVDF membranes. J Memb Sci. 2011;375:1-27. https://doi.org/10.1016/j.memsci.2011.03.014
- Zhao YH, Zhu XY, Wee KH, Bai R. Achieving highly effective non-biofouling performance for polypropylene membranes modified by UV-induced surface graft polymerization of two oppositely charged monomers. J Phys Chem B. 2010;114:2422-9. https://doi.org/10.1021/jp908194g
- Hu S, Brittain WJ. Surface grafting on polymer surface using physisorbed free radical initiators. Macromolecules. 2005;38:6592-7. https://doi.org/10.1021/ma0479060
- Joung YK, Choi JH, Bae JW, Park KD. Hyper-branched poly(poly(ethylene glycol)methacrylate)-grafted surfaces by photo-polymerization with iniferter for bioactive interfaces. Acta Biomater. 2008;4:960-6. https://doi.org/10.1016/j.actbio.2008.02.008
- Sarac AS. Redox polymerization. Prog Polym Sci. 1999;24:1149-204. https://doi.org/10.1016/S0079-6700(99)00026-X
- Tokumura M, Wada Y, Usami Y, Yamaki T, Mizukoshi A, Noguchi M, Yanagisawa Y. Method of removal of volatile organic compounds by using wet scrubber coupled with photo-Fenton reaction - preventing emission of by-products. Chemosphere. 2012;89:1238-42. https://doi.org/10.1016/j.chemosphere.2012.07.018
- Gambogi RJ, Cho DL, Yasuda H, Blum FD. Characterization of plasma polymerized hydrocarbons using CP-MAS 13C-NMR. J Polym Sci A. 1991;29:1801-5. https://doi.org/10.1002/pola.1991.080291212
- Barros JAG, Fechine GJM, Alcantara MR, Catalani LH. Poly(N-vinyl-2-pyrrolidone) hydrogels produced by Fenton reaction. Polymer. 2006;47:8414-9. https://doi.org/10.1016/j.polymer.2006.10.033
- Rong Q, Han H, Feng F, Ma Z. Network nanostructured polypyrrole hydrogel/au composites as enhanced electrochemical biosensing platform. Sci Rep. 2015;5:11440. https://doi.org/10.1038/srep11440
- Zhang Z, Chao T, Chen S, Jiang S. Superlow fouling sulfobetaine and carboxybetaine polymers on glass slides. Langmuir. 2006;22:10072-7. https://doi.org/10.1021/la062175d
- Bergstrom K, Holmberg K, Safranj A, Hoffman AS, Edgell MJ, Kozlowski A, Hovanes BA, Harris JM. Reduction of fibrinogen adsorption on PEG-coated polystyrene surfaces. J Biomed Mater Res. 1992;26:779-90. https://doi.org/10.1002/jbm.820260607
- Sun L, Zhang S, Zhang J, Wang N, Liu W, Wang W. Fenton reaction-initiated formation of biocompatible injectable hydrogels for cell encapsulation. J Mater Chem B. 2013;1:3932.
- Kao C-W, Cheng P-H, P-T W, Wang S-W, Chen IC, Cheng N-C, Yang K-C, Zwitterionic YJ. Poly(sulfobetaine methacrylate) hydrogels incorporated with angiogenic peptides promote differentiation of human adipose-derived stem cells. RSC Adv. 2017;7:51343-51. https://doi.org/10.1039/C7RA08919H
- Chien HW, Tsai CC, Tsai WB, Wang MJ, Kuo WH, Wei TC, Huang ST. Surface conjugation of zwitterionic polymers to inhibit cell adhesion and protein adsorption. Colloids Surf B. 2013;107:152-9. https://doi.org/10.1016/j.colsurfb.2013.01.071
Cited by
- Click Chemistry-Based Injectable Hydrogels and Bioprinting Inks for Tissue Engineering Applications vol.15, pp.5, 2018, https://doi.org/10.1007/s13770-018-0152-8
- Simple Thermal Pretreatment Strategy to Tune Mechanical and Antifouling Properties of Zwitterionic Hydrogels vol.35, pp.5, 2018, https://doi.org/10.1021/acs.langmuir.8b01755
- Toward Antibiofouling PVDF Membranes vol.35, pp.20, 2018, https://doi.org/10.1021/acs.langmuir.9b00703
- In vitro and in vivo hemocompatibility assessment of ultrathin sulfobetaine polymer coatings for silicon-based implants vol.34, pp.2, 2018, https://doi.org/10.1177/0885328219831044
- Healing kinetics of diabetic wounds controlled with charge-biased hydrogel dressings vol.7, pp.45, 2019, https://doi.org/10.1039/c9tb01662g
- Radical polymerization as a versatile tool for surface grafting of thin hydrogel films vol.11, pp.27, 2018, https://doi.org/10.1039/d0py00787k
- Residual Lignin and Zwitterionic Polymer Grafts on Cellulose Nanocrystals for Antifouling and Antibacterial Applications vol.2, pp.8, 2018, https://doi.org/10.1021/acsapm.0c00212
- Anti-Biofouling Strategies for Long-Term Continuous Use of Implantable Biosensors vol.8, pp.3, 2018, https://doi.org/10.3390/chemosensors8030066
- Modification of relevant polymeric materials for medical applications and devices vol.3, pp.6, 2020, https://doi.org/10.1002/mds3.10073
- Recent advances in hydrogel-based anti-infective coatings vol.85, pp.None, 2018, https://doi.org/10.1016/j.jmst.2020.12.070