Acknowledgement
Supported by : National Research Foundation (NRF)
References
- Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science. 2002;297:353-6. https://doi.org/10.1126/science.1072994
- Reeve A, Simcox E, Turnbull D. Ageing and Parkinson's disease: why is advancing age the biggest risk factor? Ageing Res Rev. 2014;14:19-30. https://doi.org/10.1016/j.arr.2014.01.004
- Rossi F, Cattaneo E. Neural stem cell therapy for neurological diseases: dreams and reality. Nat Rev Neurosci. 2002;3:401-9. https://doi.org/10.1038/nrn809
- Martino G, Pluchino S. The therapeutic potential of neural stem cells. Nat Rev Neurosci. 2006;7:395-406.
- Hong S, Yang K, Kang B, Lee C, Song IT, Byun E, Park KI, Cho SW, Lee H. Hyaluronic acid catechol: a biopolymer exhibiting a pH-dependent adhesive or cohesive property for human neural stem cell engineering. Adv Funct Mater. 2013;23:1774-80. https://doi.org/10.1002/adfm.201202365
- Yang K, Lee JS, Kim J, Lee YB, Shin H, Um SH, Kim JB, Park KI, Lee H, Cho SW. Polydopamine-mediated surface modification of scaffold materials for human neural stem cell engineering. Biomaterials. 2012;33:6952-64. https://doi.org/10.1016/j.biomaterials.2012.06.067
- Yang K, Jung H, Lee HR, Lee JS, Kim SR, Song KY, Cheong E, Bang J, Im SG, Cho SW. Multiscale, hierarchically patterned topography for directing human neural stem cells into functional neurons. ACS Nano. 2014;8:7809-22. https://doi.org/10.1021/nn501182f
- Seo HI, Cho AN, Jang J, Kim DW, Cho SW, Chung BG. Thermo-responsive polymeric nanoparticles for enhancing neuronal differentiation of human induced pluripotent stem cells. Nanomed Nanotech Biol Med. 2015;11:1861-9. https://doi.org/10.1016/j.nano.2015.05.008
- Kim J, Yang K, Lee JS, Hwang YH, Park HJ, Park KI, Lee DY, Cho SW. Enhanced self-renewal and accelerated differentiation of human fetal neural stem cells using graphene oxide nanoparticles. Macromol Biosci. 2017;17:1600540. https://doi.org/10.1002/mabi.201600540
- Hayashi K, Tabata Y. Preparation of stem cell aggregates with gelatin microspheres to enhance biological functions. Acta Biomater. 2011;7:2797-803. https://doi.org/10.1016/j.actbio.2011.04.013
- Lee TJ, Kang S, Jeong GJ, Yoon JK, Bhang SH, Oh J, Kim BS. Incorporation of gold-coated microspheres into embryoid body of human embryonic stem cells for cardiomyogenic differentiation. Tissue Eng Part A. 2014;21:374-81.
- Han J, Kim B, Shin JY, Ryu S, Noh M, Woo J, Park JS, Lee Y, Lee N, Hyeon T. Iron oxide nanoparticle-mediated development of cellular gap junction crosstalk to improve mesenchymal stem cells' therapeutic efficacy for myocardial infarction. ACS Nano. 2015;9:2805-19. https://doi.org/10.1021/nn506732n
- Ferreira L, Squier T, Park H, Choe H, Kohane DS, Langer R. Human embryoid bodies containing nano-and microparticulate delivery vehicles. Adv Mater. 2008;20:2285-91. https://doi.org/10.1002/adma.200702404
- Cordey M, Limacher M, Kobel S, Taylor V, Lutolf MP. Enhancing the reliability and throughput of neurosphere culture on hydrogel microwell arrays. Stem Cells. 2008;26:2586-94. https://doi.org/10.1634/stemcells.2008-0498
- Mori H, Ninomiya K, Kino-oka M, Shofuda T, Islam MO, Yamasaki M, Okano H, Taya M, Kanemura Y. Effect of neurosphere size on the growth rate of human neural stem/progenitor cells. J Neurosci Res. 2006;84:1682-91. https://doi.org/10.1002/jnr.21082
- MaHam A, Tang Z, Wu H, Wang J, Lin Y. Protein-based nanomedicine platforms for drug delivery. Small. 2009;5:1706-21. https://doi.org/10.1002/smll.200801602
- Li L, Muñoz-Culla M, Carmona U, Lopez MP, Yang F, Trigueros C, Otaegui D, Zhang L, Knez M. Ferritin-mediated siRNA delivery and gene silencing in human tumor and primary cells. Biomaterials. 2016;98:143-51. https://doi.org/10.1016/j.biomaterials.2016.05.006
- Lin X, Xie J, Niu G, Zhang F, Gao H, Yang M, Quan Q, Aronova MA, Zhang G, Lee S. Chimeric ferritin nanocages for multiple function loading and multimodal imaging. Nano Lett. 2011;11:814-9. https://doi.org/10.1021/nl104141g
- Liang M, Fan K, Zhou M, Duan D, Zheng J, Yang D, Feng J, Yan X. H-ferritin-nanocaged doxorubicin nanoparticles specifically target and kill tumors with a single-dose injection. Proc Natl Acad Sci. 2014;111:14900-5. https://doi.org/10.1073/pnas.1407808111
- Zhen Z, Tang W, Chen H, Lin X, Todd T, Wang G, Cowger T, Chen X, Xie J. RGD-modified apoferritin nanoparticles for efficient drug delivery to tumors. ACS Nano. 2013;7:4830-7. https://doi.org/10.1021/nn305791q
- Chambers SM, Fasano CA, Papapetrou EP, Tomishima M, Sadelain M, Studer L. Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol. 2009;27:275-80. https://doi.org/10.1038/nbt.1529
- Shi Y, Kirwan P, Livesey FJ. Directed differentiation of human pluripotent stem cells to cerebral cortex neurons and neural networks. Nat Protoc. 2012;7:1836-46. https://doi.org/10.1038/nprot.2012.116
- Keach S, Banker G. Culturing hippocampal neurons. Nat Protoc. 2006;1:2406-15. https://doi.org/10.1038/nprot.2006.356
- Alekseenko VA, Waseem TV, Fedorovich SV. Ferritin, a protein containing iron nanoparticles, induces reactive oxygen species formation and inhibits glutamate uptake in rat brain synaptosomes. Brain Res. 2008;1241:193-200. https://doi.org/10.1016/j.brainres.2008.09.012
- Roskams AJI, Connor JR. Iron, transferrin, and ferritin in the rat brain during development and aging. J Neurochem. 1994;63:709-16.
- Alimperti S, Andreadis ST. CDH2 and CDH11 act as regulators of stem cell fate decisions. Stem Cell Res. 2015;14:270-82. https://doi.org/10.1016/j.scr.2015.02.002
- Shen Q, Wang Y, Kokovay E, Lin G, Chuang SM, Goderie SK, Roysam B, Temple S. Adult SVZ stem cells lie in a vascular niche: a quantitative analysis of niche cell-cell interactions. Cell Stem Cell. 2008;3:289-300. https://doi.org/10.1016/j.stem.2008.07.026
- Seo J, Lee JS, Lee K, Kim D, Yang K, Shin S, Mahata C, Jung HB, Lee W, Cho SW, Lee T. Switchable water-adhesive, superhydrophobic palladium-layered silicon nanowires potentiate the angiogenic efficacy of human stem cell spheroids. Adv Mater. 2014;26:7043-50. https://doi.org/10.1002/adma.201402273
- Kriks S, Shim JW, Piao J, Ganat YM, Wakeman DR, Xie Z, Carrillo-Reid L, Auyeung G, Antonacci C, Buch A. Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson/'s disease. Nature. 2011;480:547-51. https://doi.org/10.1038/nature10648
- Beard JL, Connor JR, Jones BC. Iron in the brain. Nutr Rev. 1993;51:157-70.
- Schonberg DL, Goldstein EZ, Sahinkaya FR, Wei P, Popovich PG, McTigue DM. Ferritin stimulates oligodendrocyte genesis in the adult spinal cord and can be transferred from macrophages to NG2 cells in vivo. J Neurosci. 2012;32:5374-84. https://doi.org/10.1523/JNEUROSCI.3517-11.2012
- Erikson KM, Pinero DJ, Connor JR, Beard JL. Regional brain iron, ferritin and transferrin concentrations during iron deficiency and iron repletion in developing rats. J Nutr. 1997;127:2030-8. https://doi.org/10.1093/jn/127.10.2030
- Kress GJ, Dineley KE, Reynolds IJ. The relationship between intracellular free iron and cell injury in cultured neurons, astrocytes, and oligodendrocytes. J Neurosci. 2002;22:5848-55. https://doi.org/10.1523/JNEUROSCI.22-14-05848.2002
- Moos T, Morgan EH. The metabolism of neuronal iron and its pathogenic role in neurological disease. Ann N Y Acad Sci. 2004;1012:14-26. https://doi.org/10.1196/annals.1306.002
- Lu D, Chen EY, Lee P, Wang YC, Ching W, Markey C, Gulstrom C, Chen LC, Nguyen T, Chin WC. Accelerated neuronal differentiation toward motor neuron lineage from human embryonic stem cell line (H9). Tissue Eng Part C Methods. 2014;21:242-52.
Cited by
- Enhancing Neurogenesis of Neural Stem Cells Using Homogeneous Nanohole Pattern-Modified Conductive Platform vol.21, pp.1, 2018, https://doi.org/10.3390/ijms21010191
- Iron Ion-Releasing Polypeptide Thermogel for Neuronal Differentiation of Mesenchymal Stem Cells vol.21, pp.1, 2018, https://doi.org/10.1021/acs.biomac.9b01096
- Multifaceted application of nanoparticle-based labeling strategies for stem cell therapy vol.34, pp.None, 2018, https://doi.org/10.1016/j.nantod.2020.100897