DOI QR코드

DOI QR Code

수리생태적 연결성 평가를 위한 격자기반 수리해석 모형 개발

Development of grid-based hydraulc model for ecohydraulic connectivity assessment

  • 투고 : 2018.01.16
  • 심사 : 2018.02.28
  • 발행 : 2018.05.31

초록

지금까지 추진해 오던 제외지 중심의 하천복원에서 벗어나 최근에는 제내지까지 복원하고자 하는 노력이 시도되고 있다. 이의 일환으로 구하도의 복원이 추진되고 있으나 이로 인한 수리적 연결성 및 생태적 연결성 향상을 정량적으로 평가할 적합한 모형의 개발은 미진한 상태이다. 본 연구에서는 구하도 복원을 통한 생태적 연결성 회복을 평가할 수 있는 격자기반의 수리해석 모형을 개발하였다. 본 모형의 적용성을 검토하기 위하여 노탑리 일원의 청미천 하천복원 사업지를 대상으로 수리생태적 연결성을 평가하였다. 본 모형으로 수리 및 생태적 특성의 시 공간적 분포를 신속하고 간단하게 해석할 수 있었으며 향후 수리적 생태적 연결성을 평가하는 적절한 도구로 활용될 수 있을 것으로 판단된다.

Beyond river restoration focused on the inside region of main streams up to now, the river restoration including the outside region of streams has been started recently. As a part of this attempt, the restoration of abandoned rivers has been tried, but the development of a suitable model to quantitatively assess the improvement of hydraulic and ecological connectivity is not still satisfying. In this study, a grid - based hydraulic analysis model to evaluate the recovery of ecological connectivity through the restoration of abandoned rivers has been developed. In order to examine the applicability of this model, the ecohydaulic connectivity of the Cheongmi River Project area in Notap region was evaluated. This model can promptly and simply analyze the temporal and spatial distribution of the hydraulic and ecological characteristics, and it can be used as a appropriate tool to assess the hydraulic and ecological connectivity in the future.

키워드

참고문헌

  1. Chiu, C.-L. (1987). "Entropy and probability concepts in hydraulics." Journal of Hydraulic Engineering, ASCE, Vol. 113, No. 5, pp. 583-599. https://doi.org/10.1061/(ASCE)0733-9429(1987)113:5(583)
  2. Chiu, C.-L. (1988). "Entropy and 2-D velocity distribution in open channels." Journal of Hydraulic Engineering, ASCE, Vol. 114, No. 10, pp. 738-756. https://doi.org/10.1061/(ASCE)0733-9429(1988)114:7(738)
  3. Chiu, C.-L., and Said, C. A. A. (1995). "Maximum and mean velocities and entropy in open-channel flow." Journal of Hydraulic Engineering, ASCE, Vol. 121, No. 1, pp. 26-35. https://doi.org/10.1061/(ASCE)0733-9429(1995)121:1(26)
  4. Choi, S. U., Jung, S. H., and Kim, S. K. (2015). "A quasi-2D and quasi-steady hydraulic model for physical habitat simulations." Ecohydrology, Vol. 8, pp. 263-272. https://doi.org/10.1002/eco.1504
  5. Jin, S. N. (2017). Modeling the distribution of floodplain vegetation in the medium sized stream of the central Korean Peninsula. Ph. D. dissertation, Inha University, pp. 89-91.
  6. Jun, K. S. (1998). "Quasi-two-dimensional model for floodplain flow simulation." Journal of Korea Water Resources Association, Vol. 31, No. 5, pp. 515-528.
  7. Kim, E. J., Cho, K. H., and Kang, J. G. (2014). "The study of correlation between riparian environment and vegetation distribution in Nakdong river." Journal of Korea Water Resources Association, Vol. 47, No. 4, pp. 321-330. https://doi.org/10.3741/JKWRA.2014.47.4.321
  8. Kim, J. S., and Kim, K. H. (2015). "Sustainable river restoration through enlarging river space." Journal of Korea Water Resources Association, Vol. 48, No. 4, pp. 39-44.
  9. Kim, M. J. (2007). "Suggestions for ecological stream restoration." Ecological Restoration Division, National Institute of Environmental Research, Vol. 16, No. 11, pp. 59-68.
  10. Kim, S. H., Kim, D. N., and Cho, K. H. (2015). "Evaluation of habitat improvement using two-dimensional fish habitat modeling after the connectivity restoration in an isolated former channel." Ecology and Resilient Infrastructure, KSEIE, Vol. 2, No. 2, pp. 137-146. https://doi.org/10.17820/eri.2015.2.2.137
  11. Kim, S. K., and Choi, S. U. (2015). "Simulation of change in physical habitat of fish using the mobile bed model in a downstream river of dam." Ecology and Resilient Infrastructure, KSEIE, Vol. 2, No. 4, pp. 317-323. https://doi.org/10.17820/eri.2015.2.4.317
  12. Lindenschmidt, K.-E. (2008). "Quasi-2D approach in modelling the transport of contaminated sediments in floodplains during river flooding - Model coupling and uncertainty analysis." Environmental Engineering Science, Vol. 25, No. 3, pp. 333-352. https://doi.org/10.1089/ees.2006.0192
  13. Miller, N. S., Semmens, J. D., Goodrich, C. D., Hernandez, M., Mille, C. R., Kepner, G. W., and Guetin, D. P. (2006). "The auto- mated geospatial watershed assessment tool." Environmenetal Modelling & Software, Vol. 22, pp. 365-377.
  14. Morse, B., Richard, M., Hamaï, K., Godin, D., and Godin, D. (2010). "Gauging rivers during all seasons using the Q2D velocity index method." Journal of Hydraulic Engineering, ASCE, Vol. 136, No. 4, pp. 195-203. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000143
  15. Naiman, R. J., and Decamp, H. (1997). "The ecology of interfaces: Riparian zones." Annual Reviews of Ecological and Systematics, Vol. 28, pp. 621-658. https://doi.org/10.1146/annurev.ecolsys.28.1.621
  16. Park, M. K., Uhm, C. S., Song, Y. S., and Park, M. J. (2012). "Natural river flow characteristics using velocity distribution." Journal of Korean Society of Hazard Mitigation, Vol. 12, No. 4, pp. 209-214. https://doi.org/10.9798/KOSHAM.2012.12.4.209
  17. Shields, F. D., Copeland, R. R., Klingeman, C. P., Doyle, W. M., and Simon, A. (2003). "Design for stream restoration." Journal of Hydraulic Engineering, ASCE, Vol. 129, No. 8, pp. 575-584. https://doi.org/10.1061/(ASCE)0733-9429(2003)129:8(575)
  18. Willems, P., Vaes, G., Popa, D., Timbe, L., and Berlamont, J. (2002). "Quasi 2D river flood modelling." River Flow 2002, Edited by D. Bousmar and Y. Zech, Swets, and Zeitlinger, Lisse, Vol. 2, pp. 1253-1259.