DOI QR코드

DOI QR Code

부력식 연직수문의 자유흐름 상태에서 하단방류 특성에 관한 실험적 연구

An experimental study on the discharge characteristics of underflow type floating vertical lift gate at free-flow condition

  • 투고 : 2018.01.08
  • 심사 : 2018.02.02
  • 발행 : 2018.05.31

초록

연직수문의 방류량 계산에 필요한 수리학적 변수는 유량계수, 수문개방고, 상류수심이다. 자동수문의 수문개방고는 나머지 변수에도 영향을 미치기 때문에, 운영 중 수문개방고의 거동을 예측하는 것은 정밀한 수문설계를 위해 매우 중요하다. 본 연구에서는 부력식 연직수문 모형을 대상으로 부력이론으로 계산한 수문개방고와 실험에서 방류 중에 측정한 값과의 관계로 부터, 임의의 상류수심에서 수문개방고를 예측할 수 있는 무차원 관계식을 도출하였다. 측정값이 계산 값과 차이가 나는 것은 동수압 하중에 의한 영향임을 압력계수를 이용하여 검증하였다. 유량계수는 수문개방율과의 무차원 관계식을 도출하였다. 도출된 관계식들을 홍수추적에 적용한 결과, 수문설계 시에는 동수압 하중으로 인한 수문개방 억제 효과를 충분히 고려하여야 하는 것으로 판단되었다.

Hydraulic variables such as discharge coefficient, gate opening, and upstream water depth are required to calculate the discharge of vertical lift gate. It is very important for a precise gate design, because it may affect the rest, to predict the behavior of gate opening during operation. In this study, an equation by which gate opening could be predicted with any upstream water depths was derived from the relation between the calculated value from buoyancy theory and measured one from experiment for a floating gate model. Downpull force was the reason for the differences between the calculated and the measured and it was verified using pressure coefficient. Also, the relation of discharge coefficient with gate opening ratios was derived. The derived relations were used for flood routing and it was realized that downpull force effect should be fully taken into account during gate design.

키워드

참고문헌

  1. Aydin, I., Telci, I., and Dundar, O. (2006). "Prediction of downpull on closing high head gates." Journal of Hydraulic Research IAHR, Vol. 44, No. 6, pp. 822-831. https://doi.org/10.1080/00221686.2006.9521733
  2. Bruner, G. W. (2016). HEC-RAS river analysis system: hydraulic reference manual. CPD-69, US Army Corps of Engineers, Hydrologic Engineering Center, pp. 8.12-13.
  3. Chung Nam Provincial Government (2008). Fundamental planning report in Chiseong river, No. 4, pp. 3-78. (in Korean)
  4. Erbisti, P. C. (2004). Design of hydraulic gates. Tokyo: A.A Balkema Publishers.
  5. Fluent, A. N. S. Y. S. (2011). ANSYS fluent user's guide, release 14.0. PA: ANSYS Fluent.
  6. Han, I. Y., Choi, H. S., Lee, J. H., and Ra, S. M. (2017). "The performance of the floating and lift type movable weir for automatic water level control at middle and upper stream of tributary river." Journal of Korean Society of Hazard Mitigation, Vol. 17, No. 2, pp. 481-493. (in Korean) https://doi.org/10.9798/KOSHAM.2017.17.2.481
  7. Henderson, F. M. (1966). Open channel flow. Macmillan, New York.
  8. Henry, H. R. (1950). "Discussion: diffusion of submerged jet." Transactions of the American Society of Civil Engineers, Vol. 115, pp. 687-697.
  9. Kim, K. H. (1998). Hydraulics. Bosunggak, pp. 65-67, pp. 432-434, pp. 444-445, p. 495. (in Korean)
  10. Murray, R. I. (1966). Hydraulic downpull forces on large gates.
  11. Naudascher, E., Kobus, H., and Rao, R. P. R. (1964). Hydrodynamic analysis for high-head leaf gates.
  12. Oskuyi, N. N., and Salmasi, F. (2012). "Vertical sluice gate discharge coefficient." Journal of Civil Engineering and Urbanism, Vol. 2, No. 3, pp. 108-114.
  13. Robert, L. S., Gary, Z. W., and John, K. V. (1996). Elementary fluid mechanics 7th edition. John Wiley & Sons, p. 519.
  14. Sagar, B. (1977). Downpull in high-head gate installations, Parts 1, 2, 3. Water Power Dam Construct, (3), 38-39; (4), 52-55; (5), 29-35.
  15. Sohn, B. J., Maeng, J. S., Lee, S. H. (1992). Fluid mechanics. Hweo jung dang, pp. 522-553. (in Korean)
  16. Swamee, P. K. (1992). "Sluice-gate discharge equations." Journal of Irrigation and Drainage Engineering, Vol. 118, No. 1, pp. 56-60. https://doi.org/10.1061/(ASCE)0733-9437(1992)118:1(56)