DOI QR코드

DOI QR Code

A study on the variation of design flood due to climate change in the ungauged urban catchment

기후변화에 따른 미계측 도시유역의 확률홍수량 변화에 관한 연구

  • Hwang, Jeongyoon (Department of Civil and Environmental Engineering, Yonsei University) ;
  • Ahn, Jeonghwan (Department of Civil and Environmental Engineering, Induk University) ;
  • Jeong, Changsam (Department of Civil and Environmental Engineering, Induk University) ;
  • Heo, Jun-Haeng (Department of Civil and Environmental Engineering, Yonsei University)
  • 황정윤 (연세대학교 토목환경공학과) ;
  • 안정환 (인덕대학교 토목환경공학과) ;
  • 정창삼 (인덕대학교 토목환경공학과) ;
  • 허준행 (연세대학교 토목환경공학과)
  • Received : 2018.01.17
  • Accepted : 2018.02.02
  • Published : 2018.05.31

Abstract

This research evaluated the change in rainfall quantile during S1, S2, and S3 by using Representative Concentration Pathways (RCP) 4.5 climate scenario HadGEM3-RA Regional Climate Model (RCM) produced by downscaling and bias correlation compared to the past standard observation data S0. Also, the maximum flood peak volume and flood area were calculated by using the urban runoff model and the impact of climate change was analyzed in each period. For this purpose, Gumbel distribution was used as an appropriate model based on the method of maximum likelihood. As a result, in the case of the 10 year-frequency which is the design of most urban drainage facilities, the rainfall quantile is in increased about 10% if we assume 50 years from now with the $3^{rd}$ quarter value and about 20% if we assume 70 years from now. This result implies that the installed urban drainage facility based on the currently set design flood volume cannot be met the design criteria in the future. Therefore, it is necessary to reflect future climate conditions to current urban drainage facilities.

본 연구에서는 미계측 도시유역의 수공구조물 설계기준의 불확실성을 검토하기 위해 과거관측자료(S0)를 기준으로 상세화 기법(downscaling) 및 편의보정(bias correlation)을 통해 생산된 RCP 4.5 기후시나리오 HadGEM3-RA (RCM)모델을 이용하여 S1 (2017~2046년), S2 (2047~2076년), S3 (2077~2100년) 기간의 확률강우량의 변화를 평가하고, 도시유출모형을 이용하여 최대첨두홍수량을 산정하고 기후변화 기간별 영향을 분석하였다. 이때 확률분포형은 Gumbel, 매개변수 추정은 최우도법(ML)을 사용하였다. 평가 결과 대부분의 도시배수시설물 설계빈도인 10년 빈도의 경우 3사분위값을 기준으로 50년 미래를 가정할 경우에는 약 10%, 70년 이상의 미래를 가정할 경우에는 약 20%의 확률 홍수량 증가가 예상되었다. 이러한 결과는 현재를 기준으로 설정된 설계홍수량으로 설치된 도시배수시설물이 미래에는 설계기준에 미달하는 시설물이 될 수 있다는 것을 의미하며, 기후변화에 대응 위해서 설계기준에 시설물의 내구연한을 고려한 미래 기후상태를 반영해야할 것으로 판단된다.

Keywords

References

  1. Ahn, J. (2014). Flood frequency analysis of ungauged urban watersheds by means of an event-based model. Ph. D. dissertation, Yonsei University, pp.46-51.
  2. Ehret, U., Zehe, E., Wulfmeyer, V., Warrach-Sagi, K., and Liebert, J. (2012). "HESS opinions should we apply bias correction to global and regional climate model data?" Hydrology and Earth System Sciences, Vol. 16, No. 9, pp. 3391-3404. https://doi.org/10.5194/hess-16-3391-2012
  3. Giorgi, F., and Mearns, L. O. (1999). "Introduction to special section: regional climate modeling revisited." Journal of Geophysical Research, Vol. 104, pp. 6335-6352. https://doi.org/10.1029/98JD02072
  4. Griffis, V. W., and Stedinger, J. R. (2007). "Log-pearson type 3 distribution and its application in flood frequency analysis. 1: distribution characteristics." Journal of Hydrologic Engineering, Vol. 12, No. 5, pp. 482-491. https://doi.org/10.1061/(ASCE)1084-0699(2007)12:5(482)
  5. Gumbel, E. J. (1958). Statistics of extremes. Columbia University Press, New York.
  6. Gupta, V. K., and Waymire, E. (1990). "Multiscaling properties of spatial rainfall and river flow distributions." Journal of Geophysical Research, Vol. 95, No. D3, pp. 1999-2009. https://doi.org/10.1029/JD095iD03p01999
  7. Huber, W. C., and Dickinson, R. E. (1988). Storm water management model version 4: user's manual. EPA/600/3-88/001a, Environmental Protection Agency, Athens, GA.
  8. Huff, F. A. (1967). "Time distribution of rainfall in heavy storms." Water Resources Research, Vol. 3, No. 4, pp. 1007-1019. https://doi.org/10.1029/WR003i004p01007
  9. Hwang, S., Graham, W., Hernandez, J. L., Martinez, C., Jones, J. W., and Adams, A. (2011). "Quantitative spatiotemporal evaluation of dynamically downscaled MM5 precipitation predictions over the Tampa bay region, Florida." Journal of Hydrometeorology, Vol. 12, No. 6, pp. 1447-1464. https://doi.org/10.1175/2011JHM1309.1
  10. Jain, S., and Lall, U. (2000). "The magnitude and timing of annual maximum floods: trends and large-scale climatic associations for the Blacksmith Fork river Utah." Water Resources Research, Vol. 36, No. 12, pp. 3641-3652. https://doi.org/10.1029/2000WR900183
  11. Jung, Y. H., Kim, S. Y., Kim, T. S., and Heo, J. H. (2008). "Rainfall quantile estimation using scaling property in Korea." Journal of Korea Water Resources Association, Vol. 41, No. 9, pp. 873-884. https://doi.org/10.3741/JKWRA.2008.41.9.873
  12. Kharin, V. V., and Zwiers, F. W. (2005). "Estimating extremes in transient climate change simulations." Journal of Climate, Vol. 18, pp. 1156-1173. https://doi.org/10.1175/JCLI3320.1
  13. Kim, K. D., Kho, Y. W., and Heo, J. H. (2000). "The estimation of areal rainfall quantiles in Han river basin." Journal of Korea Water Resources Association, Vol. 33, No. 4, pp. 419-426.
  14. Kim, S. U., and Lee, Y. S. (2015). "Flood frequency analysis considering probability distribution and return period under nonstationary condition." Journal of Korea Water Resources Association, Vol. 48, No. 7, pp. 567-579. https://doi.org/10.3741/JKWRA.2015.48.7.567
  15. Koo, Y. M., and Seo, D. I. (2017). "Parameter estimations to improve urban planning area runoff prediction accuracy using Stormwater Management Model (SWMM)." Journal of Korea Water Resources Association, Vol. 50, No. 5, pp. 303-313. https://doi.org/10.3741/JKWRA.2017.50.5.303
  16. Lee, D. J., and Heo, J. H. (2001). "Frequency analysis of daily rainfall in Han river basin based on regional L-moments algorithm." Journal of Korea Water Resources Association, Vol. 34, No. 2, pp. 119-130.
  17. Lee, D. Y., Lee, J. S., and Kim, D. K. (2014). "Applicability of a space-time rainfall downscaling algorithm based on multi- fractal framework in modeling heavy rainfall events in Korea peninsula." Journal of Korea Water Resources Association, Vol. 47, No. 9, pp. 839-852. https://doi.org/10.3741/JKWRA.2014.47.9.839
  18. Lee, H., Jeon, M. W., Balin, D., and Rode, M. (2009). "Application of rainfall runoff model with rainfall uncertainty." Journal of Korea Water Resources Association, Vol. 42, No. 10, pp. 773-783. https://doi.org/10.3741/JKWRA.2009.42.10.773
  19. Lee, J.-K., and Chu, H.-J. (2006). "Time distribution cahracteristics of an annual maximum rainfall according to rainfall durations using Huff's method." Journal of the Korean Society of Civil Engineering, Vol. 26, No. 5B, pp. 519-528.
  20. Leung, S. W., Harreman, M. T., Hodel, M. R., Hodel, A. E., and Corbett, A. H. (2003). "Dissection of the karyopherin alpha Nuclear Localization Signal (NLS)-binding groove: functional requirements for NLS binding." Journal of Biological Chemistry, Vol. 278, pp. 41947-41953. https://doi.org/10.1074/jbc.M307162200
  21. Mearns, L. O., Easterling, W., Hays, C., and Marx, D. (2001). "Comparison of agricultural impacts of climate change calculated from high and low resolution climate change scenarios: Part I. The uncertainty due to spatial scale." Climatic Change, Vol. 51, pp. 131-172. https://doi.org/10.1023/A:1012297314857
  22. Ministry of Land, Transport and Maritime Affairs (MLTMA) (2011). Improvement of probability rainfall depth and com-plementary research.
  23. Ministry of Land, Transport and Maritime Affairs (MLTMA) (2012). Schematic plan for Mankyung river. Ministry of Land Transport and Maritime Affairs, Iksan, Korea.
  24. Seo, K. W., and Song, I. J. (1998). "A study on the runoff analysis due to rainfall characteristics of Huff distribution at urbanization watershed - application to Kyungnam Y residential basin." Journal of the Korean Society of Civil Engineering, Vol. 18, No. II-4, pp. 329-338.
  25. Wang, Y., Leung, L. R., McGregor, J. L., Lee, D. K., Wang, W. C., Ding, Y., and Kimura, F. (2004). "Regional climate modeling: progress, challenges, and prospects." Journal of the Meteorological Society of Japan, Vol. 82, pp. 1599-1628. https://doi.org/10.2151/jmsj.82.1599