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OSCILLATION OF SECOND ORDER SUBLINEAR NEUTRAL

DELAY DYNAMIC EQUATIONS VIA RICCATI

TRANSFORMATION†

ABHAY KUMAR SETHI

Abstract. In this work, we establish oscillation of the second order sub-

linear neutral delay dynamic equations of the form:

(r(t)((x(t) + p(t)x(τ(t)))∆)γ)∆ + q(t)xγ(α(t)) + v(t)xγ(η(t)) = 0

on a time scale T by means of Riccati transformation technique, under the
assumptions ∫ ∞

t0

(
1

r(t)

) 1
γ

∆t = ∞,

and ∫ ∞
t0

(
1

r(t)

) 1
γ

∆t < ∞,

for various ranges of p(t), where 0 < γ ≤ 1 is a quotient of odd positive
integers.
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1. Introduction

The theory of time scales which has recently introduced by Stefan Hilger [8]
in, 1988 in his Ph.D thesis and in order to unify continuous and discrete analysis
and for the last decades it is fast going and simultaneously extending to the
other areas of research. Many researchers have contributed on different aspects
of this new theory; see the survey paper by Agarwal et al. [1] and the references
cited therein.
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A time scale T is an arbitrary closed subset of the real and the cases when
the time scale is equal to the reals or to the integers represented the classical
theories of differential and difference equations. Apart from that, there is a time
scale followed by ’quantum calculus’ which has applied in quantum mechanics.
In the last few year, there has been increasing interest in obtaining sufficient
conditions for the oscillation / nonoscillation of solutions of different classes of
dynamic equations for time scales and we refer the reader to papers ([1], [4], [7],)
and the references cited therein.

The objective of this work is to study the the behavior of the solution of the
second order sublinear neutral delay dynamic equations of the form:

(r(t)((x(t) + p(t)x(τ(t)))∆)γ)∆ + q(t)xγ(α(t)) + v(t)xγ(η(t)) = 0 (1)

on an arbitary time scale T , under the assumption

(A0)
∫∞
t0

(
1
r(t)

) 1
γ

∆t =∞,

(A1)
∫∞
t0

(
1
r(t)

) 1
γ

∆t <∞,
where 0 < γ ≤ 1 is a quotient of odd positive integers, r(t) is a positive ∆
differentiable function defined on [0,∞)T , q, v → [0,∞) and p, q, v → T are rd-
continuous functions and τ, σ, η :→ T are positive rd-continuous functions such
that limt→∞ τ(t) = ∞ = lim

t→∞
α(t) = ∞ = limt→∞ η(t). Since the interest is

in the oscillatory and asymptotic behavior of solutions near infinity, we assume
that sup T =∞ and we define the time scale integral as [t0,∞)T = [t0,∞)

⋂
T .

In [11], The authors have established the oscillation criteria for

(r(t)((x(t) + p(t)x(α(t)))∆)γ)∆ + f(t, x(β(t))) = 0, (2)

by using general Riccati substitution when 0 ≤ p(t) < 1, γ > 1 is a quotient of
odd positive integers, |f(t, x)| ≥ |x|γ and (A0) hold. But, the problems are still
left for other ranges of p(t) as well as (A1) when 0 < γ < 1

Agarwal et al. [1] have considered the second order delay dynamic equations
on time scale

x∆∆(t) + p(t)x(τ(t)) = 0, (3)

and established some sufficient conditions for oscillation of (2).
Erbe et al. [7] considered the half linear delay dynamic equations on time scale

(r(t)(x∆(t))γ)∆ + p(t)xγ(τ(t)) = 0, (4)

where γ > 1 is the quotient of odd positive integers.
Agarwal et al. [2] have discussed the oscillatory behavior of solution of the

delay dynamic equation of the form:

(r(t)((x(t) + p(t)x(t− α)∆)γ)∆ + f(t, x(t− δ)) = 0, (5)

where 0 ≤ p(t) < 1 for all t ∈ [t0,∞)T . Satisfying the condition |f(t, x)| ≥
q(t)|x|γ . However, the study of (5) by means of Riccati transformation is still
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left for ranges of p(t) and 0 < γ < 1. It is interesting to see the work [13] and
[14] in comparison with [2] for the second order neutral delay dynamic equations

(r(t)((x(t) + p(t)x(t− τ))∆)γ)∆ + q(t)|x(t− δ)|γsgnx(t− δ) = 0,

where γ ≥ 1 is a ratio of odd positive integers.
The motivation of the present work has come under two ways. First is due

to the work in [13] and [14] and second is due to the work in [7], where Erbe et
al. have discussed the sublinear oscillation of the second order delay dynamic
equations

(r(t)(x′(t))γ)∆ + q(t)xγ(τ(t)) = 0,

Definition 1.1. By a solution of (1), we mean a nontrivial real valued func-
tion x ∈ C ′rd[Tx,∞), Tx ≥ t0 which has the property (x(t) + p(t)x(τ(t))) ∈
C ′rd[Tx,∞), r(t)((x(t) + p(t)x(τ(t)))∆)γ ∈ C ′rd[Tx,∞) and satisfies (1) for Tx ≥
t0. The solutions vanishing in some neighbourhood of infinite will be excluded
from our discussion. A solution x(t) of (1) is said to be oscillatory if it is neither
eventually positive nor eventually negative; otherwise it is nonoscillatory.

2. Oscillation Results with (A0)

This section deals with the oscillation results for (1)by means of Riccati
transformation technique, under the assumption (A0). Throughout our discus-
sion, we use the following notation

z(t) = x(t) + p(t)x(τ(t)). (1)

Lemma 2.1. [2] Assume that (A0) holds and r(t) ∈ C ′rd[a,∞),R such that
r∆(t) > 0. Let x(t) be an eventually positive real valued function such that
(r(t)(x∆(t))γ)∆ ≤ 0 for t ≥ t1 ≥ a. Then x∆(t) > 0 and x∆∆(t) < 0 for
t ≥ t1 > t0, where 0 < γ ≤ 1 is a quotient of odd positive integers.

Lemma 2.2. [7] Assume that the assumptions of Lemma 2.1 hold. Then there
exists a t∗ ∈ [t0,∞)T sufficiently large so that
(i) x(t) > tx∆(t) for t ∈ [t∗,∞)T
(ii)x(t)

t is strictly decreasiong on [t∗,∞)T ,
where 0 < γ ≤ 1 is a quotient of odd positive integers.

Theorem 2.3. Let 0 ≤ p(t) ≤ a <∞, τ(α(t)) = α(τ(t)) and τ(η(t)) = η(τ(t))
be hold for t ∈ [t0,∞). Assume that (A0) holds, and r∆(t) > 0, τ∆(t) ≥ 1 for
large t and
(A1) there exists λ > 0 such that vγ(x) + vγ(y) ≥ λvγ(x+ y)
and
there exists ρ > 0 such that vγ(x)+vγ(y) ≥ ρvγ(x+y), x, y ∈ R hold, where v ∈
C ′rd[Tv,∞), Tv ≥ t0 is nontrival real valued function .
Furthermore, assume that there exists a positive ∆ -differentiable function δ(t)
such that

(A2)
∫∞
t0

[
δ(s)Q(s)

(
α(s)
β(s)

)γ
+ δ(s)V (s)

(
η(s)
β(s)

)γ
− (r(s)+aγ)r(τ(s)))((δ∆(s))+)γ+1

λρ(γ+1)γ+1δγ(s)

]
∆s
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=∞,
where Q(t) = min{q(t), q(τ(t))}, V (t) = min{v(t), v(τ(t))} and (δ∆(t))+ =
max{δ∆(t), 0}. Then every solution of (1) oscillates.

Proof. Let x(t) be a nonoscillatory solution of (1). Without loss of generality,
we may assume that x(t) > 0 for t ≥ t0T . Hence, there exists t1 > t0 such that
x(t) > 0, x(τ(t)) > 0, x(α(t)) > 0 and x(η(t)) > 0 for t ≥ t1. Using (1), (1)
becomes

(r(t)(z∆(t))γ)∆ = −q(t)xγ(α(t))− v(t)xγ(η(t)) ≤ 0, 6≡ 0 for t ≥ t1. (2)

So, r(t)(z∆(t))γ is nonincreasing on [t1,∞), that is, either z∆(t) > 0 or z∆(t) < 0
for t ≥ t2 > t1. By Lemma 2.1, it follows that z∆(t) > 0 for t ≥ t2. From(1), it
is easy to see that

(r(t)(z∆(t))γ)∆ + q(t)xγ(α(t)) + v(t)xγ(η(t))+

aγ(r(τ(t))(z∆(τ(t))γ)∆ + aγq(τ(t))xγ(α(τ(t)) + aγv(τ(t))xγ(η(τ(t)) = 0 (3)

for t ≥ t2. Using (A1), (3) yields that

(r(t)(z∆(t))γ)∆ +aγ(r(τ(t))(z∆(τ(t))γ)∆ +Q(t)zγ(α(t))+V (t)zγ(η(t)) ≤ 0 (4)

and therefore,

(r(t)(z∆(t))γ)∆

zγ(β(t))
+
aγ(r(τ(t))(z∆(τ(t))γ)∆

zγ(β(t))
+
Q(t)zγ(α(t))

zγ(β(t))
+
V (t)zγ(η(t))

zγ(β(t))
≤ 0.

(5)
Let δ(t) be the positive ∆-differentiable function and consider the general Riccati
substitution

w(t) = δ(t)r(t)

(
z∆(t)

z(t)

)γ
(6)

and

v(t) = δ(t)r(τ(t))

(
z∆(τ(t))

z(τ(t))

)γ
. (7)

Due to Lemma2.1, w(t) > 0 and v(t) > 0 on [t2,∞)T . Now,

w∆(t) = δ∆

(
r

(
z∆

z

)γ)β
+ δ

(
r

(
z∆

z

)γ)∆

(8)

and

v∆(t) = δ∆

(
rτ
(
zτ∆

zτ

)γ)β
+ δ

(
rτ
(
zτ∆

zτ

)γ)∆

, (9)

where we use the notation fβ = f(β(t)). Using (6) and (7)in (8) and (9), we get

w∆(t) + aγv∆(t) =
δ∆

δβ
[
wβ + aγvβ

]
+ δ

[(
r

(
z∆

z

)γ)∆

+ aγ
(
rτ
(
zτ∆

zτ

)γ)∆
]
. (10)
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Upon using the fact(
r

(
z∆

z

)γ)∆

=
(r(z∆)γ)∆

zγβ
− r(z∆)γ(zγ)∆

zγzγβ
,

and (
rτ
(
zτ∆

zτ

)γ)∆

=
(rτ (zτ∆)γ)∆

zγτβ
− rτ (zτ∆)γ(zγτ )

zγτzγτβ
,

where τ(t) ≤ t, τ(β(t)) ≤ t and z(t) is nondecreasing on [t2,∞)T and zτβ ≤ zβ

in (10) and then applying (5), we obtain

w∆(t) + aγv∆(t) ≤ δ∆

δβ
[wβ + aγvβ ]− λQ(t)δ

zγα

zγβ
− ρV (t)δ

zγη

zγβ

− δ
[
r(z∆)γ(zγ)∆

zγzγβ
+ aγ

rτ (zτ∆)γ(zγτ )∆

zγτzγτβ

]
. (11)

By Lemma 2.2, let there exist t3 > t2 such that z(t) > tz∆(t) and z(t)
t is

decreasing on [t3,∞) and hence

z(α(t))

z(β(t))
≥ α(t)

β(t)
, t ∈ [t3,∞)T . (12)

By the potzsche chain rule [4], we find that

(zγ)∆(t) = γ

∫ 1

0

[(1− h)z(t) + hz(β(t))]γ−1dhz∆(t)

≥ γz∆(t)

∫ 1

0

[z(β(t))]γ−1dh( since γ − 1 ≤ 0, β(t) ≥ t)

that is,

(zγ)∆(t) = γz∆(zβ)γ−1 (13)

and similarly

(zγ)∆(τ(t)) ≥ γz∆τ(t)(zτβ)γ−1. (14)

Using (12), (13), and (14) in (11) we obtain

w∆(t) + aγv∆(t) ≤ δ∆

δβ
[wβ + aγvβ ]− λQδ

(
α

β

)γ
− ρV (t)δ

(
η

β

)γ
− γδ

[
r(z∆)γz∆

zγzβ
+ aγ

rτ (zτ∆)γzτ∆

zγτzτβ

]
≤ δ∆

δβ
[wβ + aγvβ ]− λQδ

(
α

β

)γ
− ρV δ

(
η

β

)γ
− γδ

[
rβ(zβ∆)γz∆

zγzβ
+ aγ

rτβ(zτβ∆)γzτ∆

zγτzτβ

]
.

(15)
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[Since r(z∆)γ) ≥ rβ(zβ∆)γ ]. Since

z(β(t)) ≥ z(t)

and

z∆(t) ≥ (r(β(t)))
1
γ z∆(β(t))/r

1
γ(t) ,

then the last inequality becomes

w∆(t) + aγv∆(t) ≤ δ∆

δβ
[wβ + aγvβ ]− λQδ

(
α

β

)γ
− ρV δ

(
η

β

)γ
− γδ

[
r(1+ 1

γ )β

r
1
γ

(
zβ∆

zβ

)γ+1

+ aγ
r(1+ 1

γ )τβ

r
1
γ τ

(
zτβ∆)

zτβ

)γ+1
]

≤ ((δ∆)+)

δβ
[wβ + aγvβ ]− λQδ

(
α

β

)γ
− ρV δ

(
η

β

)γ
γδ

[(
wβ

δβ

)θ
1

r
1
γ

+
aγ

r
1
γ τ

(
vβ

δβ

)θ]
, (16)

where θ = (γ+1)
γ . Let’s define

Aθ =
γδ

r
1
γ

(
wβ

δβ

)θ
> 0, Bθ−1 =

r
1

(γ+1)

θ(γδ)
1
θ

((δ∆)+) ≥ 0.

Then using the inequality

θABθ−1 −Aθ ≤ (θ − 1)Bθ

we obtain that(w
δ

)β
((δ∆)+)− γδ

r
1
γ

(
wβ

δβ

)θ
= θABα−1 −Aθ ≤ (θ − 1)Bθ ≤ r((δ∆)+)γ+1

δγ(γ + 1)γ+1
, (17)

and similarly (v
δ

)β
((δ∆)+)− γδ

r
τ
γ

(
vβ

δβ

)θ
≤ rτ ((δ∆)+)γ+1

δγ(γ + 1)γ+1
. (18)

Using (17) and (18 in (16), we find

w∆ + aγv∆ ≤ r((δ∆)+)γ+1

δγ(γ + 1)γ+1

+ aγ
r((δ∆)+)γ+1

δγ(γ + 1)γ+1
− λδQ

(
α

β

)γ
− ρδV

(
η

β

)γ
. (19)

Integrating (19) from t4(> t3) to t, we get

−w(t4)− aγv(t4) ≤ w(t) + aγv(t)− w(t4)− aγv(t4)
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≤
∫ t

t4

[
(r + rτaγ)((δ∆(s))+)γ+1

(γ + 1)γ+1δγ
− ρλδ{Q

(
α

β

)γ
+ V

(
η

β

)γ
}
]

∆s

which is a contradiction to (A2). This completes the proof of the theorem. �

Theorem 2.4. Let 0 ≤ p(t) ≤ a < 1, t ∈ [t0,∞)T . Assume that (A0) holds and
r∆(t) > 0. Furthermore, assume that there exists a positive ∆- differentiable
function δ(t) such that

(A3)
∫∞
t0

[
δ(s)q(s)

(
α(s)
β(s)

)γ
+ δ(s)v(s)

(
η(s)
β(s)

)γ
− r(s)((δ∆(s))+)γ+1

(1−a)(γ+1)γ+1δγ(s)∆s
]

=∞.
Then every solution of (1) oscillates.

Proof. Proceeding as in the proof of Theorem 2.3, we get (2) and by Lemma 2.1
z(t) is nondecreasing on [t2,∞)T . Hence there exists t3 > t2 such that

z(t)− p(t)z(τ(t)) = x(t) + p(t)x(τ(t))− p(t)x(τ(t))

− p(t)p(τ(t))p(τ(τ(t)))

= x(t)− p(t)p(τ(t))p(τ(τ(t)))

≤ x(t),

that is, x(t) ≥ (1− a)z(t) on [t3,∞). Consequently, (1) reduces to

(r(t)(z∆(t))γ)∆ + (1− a)q(t)zγ(α(t)) + (1− a)v(t)zγ(η(t)) ≤ 0

t ∈ [t3,∞).
The rest of the proof follows from the proof of Theorem 2.3 without Riccati

substitution (6) and hence the details are omitted. The proof of the theorem is
complete. �

Theorem 2.5. Let −1 < a ≤ p(t) ≤ 0 for t ∈ [t0,∞)T . Assume that (A0) holds
and r∆(t) > 0. Furthermore, assume that there exists a positive ∆ -differentiable
function δ(t) such that

(A4)
∫∞
t0

[
δ(s)q(s)

(
α(s)
β(s)

)γ
+ δ(s)v(s)

(
η(s)
β(s)

)γ
− r(s)((δ∆(s))+)γ+1

(γ+1)γ+1δγ(s) ∆s
]

=∞
and
(A5) lim

t→∞
sup

∫ t
t0

[q(τ(s)) + v(τ(s))] ∆s =∞

(A6)
∫∞
t0

[
1
r(θ)

∫ θ
t0

[q(s) + v(s)]∆s
] 1
γ

∆θ =∞
hold. Then every solution of (1) either oscillates or converges to zero as t→∞.

Proof. Proceeding as in the proof of Theorem 2.3 we get (2) for t ∈ [t2,∞)T .
Thus z(t) and z∆(t) are monotonic functions on [t2,∞)T . In what follows, we
consider the following four possible cases:

(i) z(t) > 0, z∆(t) > 0, (ii) z(t) < 0, z∆(t) > 0,

(iii) z(t) > 0, z∆(t) < 0, (iv) z(t) < 0, z∆(t) < 0.
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Case(i) In this case, z(t) ≤ x(t) and lim
t→∞

r(t)z∆(t) exists. Therefore, (1) reduces

to

(r(t)(z∆(t))γ)∆

zγ(β(t))
+
q(t)zγ(α(t))

zγ(β(t))
+
v(t)zγ(η(t))

zγ(β(t))
≤ 0 (20)

for t ≥ t3 > t2. Upon using the positive ∆- differentiable function δ(t), we
consider the general Riccati substitution (6) and hence

w∆(t) =
δ∆

δβ
[
wβ
]

+ δ

(
r

(
z∆

z

)γ)∆

≤ δ∆

δβ
[wβ ] + δ

[
(r(z∆)γ)∆

zγβ
− r(z∆)γ(zγ)∆

zγzγβ

]
. (21)

Due to (20), (21) becomes

w∆(t) ≤ δ∆

δβ
[wβ ]

− δ
[
q(t)zγ(α(t))

zγβ
+
v(t)zγ(η(t))

zγβ
+
r(z∆)γ(zγ)∆

zγzγβ

]
.

Using the same type of argument as in the proof of Theorem 2.3, the last in-
equality yields

w∆(t) ≤ δ∆

δβ
[wβ ]− γδ

[
q(t)

(
α

β

)γ
+ v(t)

(
η

β

)γ
+

(
wβ

δβ

)θ
1

r
1
γ

]
,

where θ = (γ+1)
γ . The rest of this case is similar to Theorem 2.3.

Case(ii) Let lim
t→∞

z(t) = b, b ∈ (−∞, 0]. We assert that b = 0. If not, then

z(α(t)) ≤ z(t) ≤ z(β(t)) < b < 0, for t ≥ t3 > t2. From (1), it follows that
z(t) > ax(τ(t)) and hence x(α(τ(t))) > 1

az(α(t)), that is, x(α(τ(t))) >
(
b
a

)
.

Also, x(η(τ(t)) >
(
b
a

)
. From (2), we have

(r(τ(t))(z∆(τ(t)))γ)∆ + q(τ(t))xγ(α(τ(t))) + v(t)xγ(η(τ(t))) = 0,

that is,

(r(τ(t))(z∆(τ(t)))γ)∆ +

(
b

a

)γ
≤ 0,

for t ≥ t3. Consequently,(
b

a

)γ ∫ t

t3

q(τ(s)) + v(τ(s)) ≤ −[r(τ(s))(z∆(τ(s)))γ ]tt3 < r(τ(t3)))(z∆(τ(t3)))γ ,

a contradiction to (A5). Thus b = 0. We claim that x(t) is bounded. If not, there
exists a sequence {ζn} such that ζn → ∞ as n → ∞ and x(ζn) = max{x(t) :
t3 ≤ t ≤ αn}. Therefore,

z(ζn) = x(ζn) + p(ζn)x(τ(ζn))

≥ x(ζn) + ax(τ(ζn))
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≥ x(ζn) + ax(ζn)

= (1 + a)x(ζn) (∵ 1 + a > 0)

→ +∞ as n→∞

gives a contradiction. Hence,

0 ≥ lim
t→∞

z(t) = lim sup
t→∞

z(t)

≥ lim sup
t→∞

(x(t) + ax(τ(t)))

≥ lim sup
t→∞

x(t) + lim inf
t→∞

(ax(τ(t)))

= lim sup
t→∞

x(t) + a lim sup
t→∞

x(τ(t))

= (1 + a) lim sup
t→∞

x(t)

implies that lim sup
t→∞

x(t) = 0, that is, lim
t→∞

x(t) = 0.

Case(iii) Proceeding as in Case(ii), we may show that x(t) is bounded. Let
lim
t→∞

z(t) = b, b ∈ [0,∞). We assert that b = 0. If not, there exist t3 > t2 and

b > 0 such that z(α(t)) ≥ z(t) > b and z(α(t)) ≥ z(t) ≥ z(β(t)) > b > 0 for
t ≥ t3. From (1) it follows that z(t) ≤ x(t) and hence (2) yields

(r(t)(z∆(t))γ)∆ ≤ −bγ [q(t) + v(t)] , t ≥ t3.

Integrating the above inequality from t3 to t, we get

z∆(t) < −b
[

1

r(t)

∫ t

t3

[q(s) + v(s)]∆s

] 1
γ

,

that is,

z(t) < z(t3)− b
∫ t

t3

[
1

r(θ)

∫ θ

t3

[q(s) + v(s)]∆s

] 1
γ

∆θ < 0,

for large t due to (A6). Hence b = 0. Using the same type of reasoning as in
Case(ii) we can show that lim

t→∞
x(t) = 0

Case(iv) We have r(t)(z∆(t))γ is nonincreasing and z(t) < 0 for t ≥ t2. If
x(t) is unbounded, then by Case(ii) it follows that z(t) > 0 for large t which
is absurd. Hence, x(t) is bounded. Consequently, z(t) is bounded and lim

t→∞
z(t)

exists. Since z(t) < 0 and nonincreasing, then we can find b > 0 and a t3 > t2
such that z(t) < b for t ≥ t3. Proceeding as in Case(iii), we obtain the fact that
lim
t→∞

z(t) = −∞ due to (A5). This contradiction argues against the Case(iv).

This completes the proof of the theorem. �

Remark 2.1. In Theorem 2.5, it is learnt that x(t) is bounded when z(t) < 0.
Also, x(t) is bounded when z(t) > 0 in Case(iii). Hence for unbounded x(t),
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Cases(ii), (iii) and (iv) are not existing ultimately. Therefore, we have proved
the following result:

Theorem 2.6. Let −1 < a ≤ p(t) ≤ 0 for t ∈ [t0,∞)T . Assume that r∆(t) > 0,
(A0) and (A4) hold. Then every unbounded solution of (1) oscillates.

Theorem 2.7. Let −∞ < a ≤ p(t) ≤ d < −1, τ(α(t)) = α(τ(t)) and τ(η(t)) =
η(τ(t)) be hold for all t ∈ [t0,∞)T . Assume that all conditions of Theorem 2.5
hold. If
(A7)

∫∞
t0

[q(τ(s)) + v(τ(s))] ds =∞,
then every bounded solution of (1) either oscillates or converges to zero as t →
∞.

Proof. Let x(t) be a bounded nonoscillatory solution of (1). Then proceeding
as in the proof of Theorem 2.5, we have four possible cases for t ∈ [t2,∞)T .
Among these cases, Cases(i), (iii) and (iv) are similar. For Case(ii), lim

t→∞
z(t)

exists. Let lim
t→∞

z(t) = b, b ∈ (−∞, 0] we claim that b = 0. If not, then there

exist z(α(t)) ≤ z(t) ≤ z(β(t)) < b < 0 and t3 > t2 such that for t ≥ t3. From
(1), it follows that z(t) > ax(τ(t)) and hence x(τ(α(t)) > b

az(α(t)), that is,

x(α(τ(t)) >
(
b
a

)
for t ≥ t3. Also, x(η(τ(t)) >

(
b
a

)
for t ≥ t3. Since (1) can be

written as

(r(τ(t))(z∆(τ(t))γ)∆ + q(τ(t))xγ(α(τ(t)) + v(τ(t))xγ(η(τ(t)) = 0,

then for t ≥ t3, it follows that

(r(τ(t))(z∆(τ(t))γ)∆ +

(
b

a

)γ
q(τ(t)) +

(
b

a

)γ
v(τ(t)) ≤ 0.

Consequently,(
b

a

)γ [∫ t

t3

q(τ(s)) +

∫ t

t3

v(τ(s))

]
∆s ≤ −

[
(r(τ(t))(z∆(τ(t))γ)∆

]t
t3

< −r(τ(t))(z∆(τ(t)))γ <∞ as t→∞

contradicts (A7). So, our claim holds. Therefore,

0 = lim
t→∞

z(t) = lim inf
t→∞

z(t)

≤ lim inf
t→∞

(x(t) + dx(τ(t)))

≤ lim sup
t→∞

x(t) + lim inf
t→∞

(dx(τ(t)))

= lim sup
t→∞

x(t) + d lim sup
t→∞

x(τ(t))

= (1 + d) lim sup
t→∞

x(t) (∵ (1 + d) < 0)

implies that lim sup
t→∞

x(t) = 0, that is, lim
t→∞

x(t) = 0. Hence the proof of the

theorem is complete. �



Oscillation of Sublinear Dynamic Equations 223

3. Oscillation Criteria with (A00)

This section deals with the sufficient conditions for oscillation of all solu-
tions of (1) under the assumption (A00).

Lemma 3.1. [11] Assume that (A00) holds. Let u(t) be an eventually positive rd-
continuous function on [t0,∞)T , t0 ≥ 0 such that r(t)u∆(t) is continuous and ∆
differentiable function with (r(t)u∆(t))γ)∆ ≤ 0, 6≡ 0 for large t ∈ [t0,∞)T , where
r(t) is positive and continuous function defined on [t0,∞)T . Then the following
statements hold:
(i) If u∆(t) > 0, then there exists a constant C > 0 such that u(t) >
CR(t) for large t.

(ii) If u∆(t) < 0, then u(t) ≥ −(r(t)(u∆(t))γ)
1
γR(t),

where R(t) =
∫∞
t

(
1
r(s)

) 1
γ

∆s.

Theorem 3.2. Let 0 ≤ p(t) ≤ a < ∞, τ(η(t)) = η(τ(t)) and τ(α(t)) = α(τ(t))
for t ∈ [t0,∞)T . Assume that (A00) holds, and r∆(t) > 0. Furthermore, assume
that
(A8)

∫∞
t0

[Rγ(α(t))Q(t) +Rγ(η(t))V (t)] ∆t =∞
and
(A9) lim sup

t→∞

∫ β(t)

t0

[
Q(s)Rγ(s) + V (s)Rγ(s) +

γ
λρ{A

γ+1
λ + aγB

γ+1
γ }R

γ(s)

r
1
γ (s)
− γ

λρ (1 + aγ) (R(s))−1

r
1
γ (β(s))

]
∆s =∞

hold for any constants A < 0, B < 0 and where Q(t) and V (t) are defined in
Theorem 2.3. Then every solution of (1) oscillates.

Proof. Proceeding as in the proof of Theorem 2.3, we obtained (2) and (4) for
t ≥ t2. In what follows, we consider two possible cases z∆(t) > 0 or z∆(t) < 0
for t ≥ t3 > t2. If z∆(t) > 0 for t ≥ t3, then z(t) ≥ CR(t) due to Lemma 3.1(i).
Therefore, (4) implies that

CγRγ(α(t))Q(t)+CγRγ(η(t))V (t) ≤ −(r(t)(z∆(t))γ)∆−(aγr(τ(t))(z∆(τ(t)))γ)∆

(1)
for t ≥ t3. Integrating (1) from t3 to t, we get∫ t

t3

CγRγ(α(s))Q(s) +

∫ t

t3

CγRγ(η(t))V (s)ds

≤ −
[
(r(s)(z∆(s))γ) + (aγr(τ(s))(z∆(τ(s)))γds

]t
t3

≤ r(t3)z∆(t3)γ + aγr(τ(t3))(z∆(τ(t3)))γ <∞,

a contradiction to (A8). Ultimately, z∆(t) < 0 for t ≥ t2. We consider the
Riccati substitutions

w(t) = r(t)(z∆(t)/z(t))γ (2)

and

v(t) = r(τ(t))(z∆(τ(t))/z(τ(t)))γ (3)
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such that w(t) < 0 and v(t) < 0 for t ≥ t3 > t2. From Lemma 3.1(ii), it is easy
to verify that

−1 ≤ w(t)Rγ(t) ≤ 0 (4)

for t ≥ t3. On the other hand, w(t) ≤ v(t) implies that

−1 ≤ v(t)Rγ(t) ≤ 0 (5)

for t ≥ t3, where we have used the fact that both z(t) and r(t)(z∆(t))γ are
nonincreasing functions on [t3,∞)T . Since

w∆(t) =
(r(t)(z∆(t))γ)∆zγ(t)− r(t)(z∆(t))γ(zγ(t))∆

zγ(t)zγ(σ(t))
,

and

v∆(t) =
(r(τ(t))(z∆(τ(t)))γ)∆zγ(τ(t))− (r(τ(t))(z∆(τ(t)))γ(zγ(τ(t)))∆

zγ(τ(t))zγ(σ(τ(t)))
,

that is,

w∆(t) =
(r(t)(z∆(t))γ)∆

zγ(β(t))
− r(t)(z∆(t))γ(zγ(t))∆

zγ(t)zγ(β(t))
,

v∆(t) =
(r(τ(t))(z∆(τ(t)))γ)∆

zγ(β(τ(t)))
− r(τ(t))(z∆(τ(t)))γ(zγ(τ(t)))∆

zγ(τ(t))zγ(β(τ(t)))
,

By the potzsche chain rule [4], we find that

(zγ(t))∆ = γ

∫ 1

0

[(1− h)z(t) + hz(β(t))]γ−1dhz∆(t)

≤ γz∆(t)zγ−1(t)

that is,

(zγ(t))∆ ≤ γz∆(t)zγ−1(t) (6)

and similarly

(zγ(τ(t))∆ ≤ γz∆(τ(t))zγ−1(τ(t)). (7)

Upon using (6) and (7) , it follows that

w∆(t) ≤ (r(t)(z∆(t))γ)∆

zγ(β(t))
− γr(t)(z∆(t))γ+1

z(t)zγ(β(t))
,

v∆(t) ≤ (r(τ(t))(z∆(τ(t)))γ)∆

zγ(β(τ(t)))
− γr(τ(t))(z∆(τ(t)))γ+1

z(τ(t))zγ(β(τ(t)))
,

that is,

w∆(t) ≤ (r(t)(z∆(t))γ)∆

zγ(β(t))
− γw

γ+1
γ (t)

r
1
γ (t)

, (8)



Oscillation of Sublinear Dynamic Equations 225

and

v∆(t) ≤ (r(τ(t))(z∆(τ(t)))γ)∆

zγ(β(τ(t)))
− γv

γ+1
γ (t)

r
1
γ (t)

(9)

Consequently,

w∆(t) + aγv∆(t) ≤ (r(t)(z∆(t))γ)∆

zγ(β(t))
+ aγ

(r(τ(t))(z∆(τ(t)))γ)∆

zγ((β(τ(t)))

− γw
γ+1
γ (t)

r
1
γ (t)

− γaγv
γ+1
γ (t)

r
1
γ (t)

≤ (r(t)(z∆(t))γ)∆

zγ(β(t))
+ aγ

(r(τ(t))(z∆(τ(t)))γ)∆

zγ(β(t))

− γw
γ+1
γ (t)

r
1
γ (t)

− γaγv
γ+1
γ (t)

r
1
γ (t)

that is,

w∆(t) + aγv∆(t) ≤ −λQ(t)
zγ(α(t))

zγ(β(t))
− ρV (t)

zγ(η(t))

zγ(β(t))
− γw

γ+1
γ (t)

r
1
γ (t)

− γaγv
γ+1
γ (t)

r
1
γ (t)

(10)

for β(t) ≥ t ≥ α(t) then, (z(α(t)))/(z(β(t)))γ ≥ 1 and hence the inequality
(10)yields

w∆(t) + aγv∆(t) ≤ −λQ(t)− ρV (t)− γw
γ+1
γ (t)

r
1
γ (t)

− γaγv
γ+1
γ (t)

r
1
γ (t)

(11)

for t ≥ t3. Therefore, we find (11) as

w∆(t)Rγ(t) + aγv∆(t)Rγ(t) ≤ −λQ(t)Rγ(t)− ρV (t)Rγ(t)

−Rγ(t)

[
γw

γ+1
γ (t)

r
1
γ (t)

+
γaγv

γ+1
γ (t)

r
1
γ (t)

]
.

Integrating the preceding inequality from t4 to β(t), we obtain

w(β(t))Rγ(β(t))− w(t4)Rγ(t4)−
∫ β(t)

t4

(Rγ(s))∆w(β(s))∆s

+ aγv(β(t))Rγ(β(t))− aγv(t4)Rγ(t4)−
∫ β(t)

t4

aγ(Rγ(s))∆v(β(s))∆s

≤ −λ
∫ β(t)

t4

Q(s)Rγ(s)− ρ
∫ β(t)

t4

V (s)Rγ(s)−
∫ β(t)

t4

Rγ(s)

[
γw

γ+1
γ

(s)

r
1
γ (s)

+
γaγv

γ+1
γ (s)

r
1
γ (s)

]
.
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By the potzsche chain rule we find that

(Rγ(t))∆ = γ

∫ 1

0

[(1− h)R(t) + hR(β(t))]γ−1dhR∆(t)

≥ γR∆(t)[R(β(t))]γ−1

that is, the above inequality becomes,

w(β(t))Rγ(β(t))− w(t4)Rγ(t4) + γ

∫ β(t)

t4

(R(β(s)))γ−1w(β(s))

r
1
γ (s)

∆s

+ aγv(β(t))Rγ(β(t))− aγv(t4)Rγ(t4) + γ

∫ β(t)

t4

aγ(R(β(s)))γ−1 v(β(s))

r
1
γ (s)

∆s

≤ −λ
∫ β(t)

t4

Q(s)Rγ(s)− ρ
∫ β(t)

t4

V (s)Rγ(s)−
∫ β(t)

t4

Rγ(s)

[
γw

γ+1
γ

(s)

r
1
γ (s)

+
γaγv

γ+1
γ (s)

r
1
γ (s)

]
∆s.

As a result,

γ

∫ β(t)

t4

(R(β(s)))γ−1w(β(s))

r
1
γ (s)

∆s+ γ

∫ β(t)

t4

Rγ(s)
w
γ+1
γ (s)

r
1
γ (s)

∆s

+

∫ β(t)

t4

aγ(R(β(s)))γ−1v(β(s))

r
1
γ (s)

∆s+ γaγ
∫ β(t)

t4

Rγ(s)
u
γ+1
γ (s)

r
1
γ (s)

∆s

≤ −w(β(t))Rγ(β(t)) + w(t4)Rγ(t4)

−λ
∫ σ(t)

t4

Q(s)Rγ(s)∆s− ρ
∫ β(t)

t4

V (s)Rγ(s)∆s+ aγv(t4)Rγ(t4)− aγv(β(t))Rγ(t).

(12)

Upon using (4) and (5), (12) reduces to

−γ
∫ σ(t)

t4

(R(β(s)))−1 1

r
1
γ (s)

∆s+ γ

∫ β(t)

t4

Rγ(s)
w
γ+1
γ (s)

r
1
γ (s)

∆s

− γ
∫ σ(t)

t4

aγ(R(β(s)))−1

r
1
γ (s)

∆s+ γ

∫ β(t)

t4

Rγ(s)
v
γ+1
γ (s)

r
1
γ (s)

∆s

≤ −w(β(t))Rγ(β(t))− λ
∫ β(t)

t4

Q(s)Rγ(s)∆s− ρ
∫ β(t)

t4

V (s)Rγ(s)∆s

− aγv(β(t))Rγ(β(t)).

We may note that γ > 0, γ+1
γ makes w

1+γ
γ (t) > 0 and so also v

1+γ
γ (t) > 0.

Therefore, w∆(t) < 0 and v∆(t) < 0 on [t3,∞)T . Since z(t) and (z∆))γ are
nonincreasing on [t3,∞)T . Hence there exists a constant A < 0, B < 0 and
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t4 > t3 such that w(t) ≤ A and v(t ≤ B on [t4,∞)T . Therefore the last
inequality becomes

− γ(1 + aγ)

∫ β(t)

t4

(R(β(s)))−1

r
1
γ (s)

∆s+ γ[A
γ+1
γ + aγB

γ+1
γ ]

∫ β(t)

t4

Rγ(s)

r
1
γ (s)

∆s

+ λ

∫ β(t)

t4

Q(s)Rγ(s)∆s+ ρ

∫ β(s)

t4

V (s)Rγ(s)∆s

≤ −w(β(t))Rγ(β(t))− aγv(t)Rγ(β(t)).

Therefore, ∫ β(t)

t4

[
Q(s)Rγ(s) + V (s)Rγ(s) +

γ

λρ
{A

γ+1
γ + aγB

γ+1
γ }R

γ(s)

r
1
γ (s)

− γ

λρ
(1 + aγ)

R(β(s))−1

r
1
γ (s)

]
∆s

≤ 1

λρ
(1 + aγ),

due to (3)and (5) a contradiction to (A9). This completes the proof of the
theorem. �

Theorem 3.3. Let −1 < a ≤ p(t) ≤ 0, t ∈ [t0,∞)T . Assume that (A00) holds
and r∆(t) > 0 for any large t. If (A5),
(A10)

∫∞
T

[Rγ(α(t))q(t) +Rγ(η(t))v(t)] ∆t =∞
and

(A11) lim sup
t→∞

∫ β(t)

t0

[
q(s)Rγ(s) + v(s)Rγ(s) + γ{A

γ+1
γ

Rγ(s)

r
1
γ (s)
− (R(β(s)))−1

r
1
γ (s)

}
]

∆s =

∞.
hold for any constants A < 0 and then every solution of (1) either oscillates or
converges to zero as t→∞.

Proof. Proceeding as in the proof of Theorem 3.2, we have (2). Thus z(t) and
(r(t)z∆(t))γ are monotonic function on [t2,∞)T . Here, we consider the four
possible cases of Theorem 2.5. It is easy to verify the cases following to Theorem
3.2 and Theorem 2.5. Hence the details are omitted. This completes the proof
of the theorem. �

Theorem 3.4. Let −∞ < a ≤ p(t) ≤ d < −1, τ(α(t))) = α(τ(t)) and τ(η(t)) =
η(τ(t)) be hold for all t ∈ [t0,∞)T . Assume that all conditions of Theorem
3.3 hold. If (A6) hold, then every bounded solution of (1) either oscillates or
converges to zero as t→∞

Proof. The proof of the theorem follows from the proof of Theorem 3.3 and
Theorem 2.7, Hence the details are omitted. The proof of the theorem is com-
plete. �

Theorem 3.5. Let −1 < a ≤ p(t) ≤ 0 for t ∈ [t0,∞)T . Assume that r∆(t) > 0,
(A00) and (A10) hold. Then every unbounded solution of (1) oscillates.
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Proof. The proof of the theorem follows from Remark 2.1 and the proof of The-
orems 3.3, 2.6, Hence the details are omitted. �

4. Discussion and Examples

In this work, our objective was to establish the sufficient conditions for
oscillation of all solutions of (1). But, our method fails to provide the conclusion
in the range −∞ < a ≤ p(t) ≤ d < −1. However, we could manage in Theorems
2.7 and 3.4 with bounded solution. In the literature, we don’t find the discussion
concerning the oscillation of neutral equations when −∞ < p(t) ≤ −1. So, it is
interesting to study the oscillation property of neutral equations in this range,
and at the same time it would be interesting to see an all solution oscillatory
problem.

In our next problem, we study the oscillatory behaviour of solutions of (1)
under the key assumptions (A0) and (A00) in which γ ≥ 1 is a quotient of
odd positive integers. We conclude this section with the following examples to
illustrate our mail results:

Example 4.1. Consider

((tγ((x(t)+(1+t−1)x(t−2)))∆)γ)∆+(t+2)γxγ(t−2)+(t+2)γxγ(t−2) = 0 (1)

on [2,∞)T , where a = 2 and t ∈ [α,∞), α > 1. If we choose δ(t) = 1, then all
conditions of Theorem 2.3 are hold true. Hence, (1) is oscillatory.

Example 4.2. Consider

((e
t
3 ((x(t)+(1+t−1)x(t−1)))∆)

1
3 )∆+etx

1
3 (t−1)+

(
et +

1 + 2
1
3

3
e
t+1
3

)
x

1
3 (t−1) = 0

(2)
on [2,∞)T , where a = 2 and t ∈ [α,∞), α > 1. Clearly, Q(t) = et−1, V (t) =

(et−1 + 1+2
1
3

3 e
t
3 ) and all conditions of Theorem 3.2 are hold true. Hence, (2) is

oscillatory.
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