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FUNCTIONS

SILVESTRU SEVER DRAGOMIR!:2

ABSTRACT. Some weighted integral inequalities of Hermite-Hadamard type
for GG-convex functions defined on positive intervals are given. Applica-
tions for special means are also provided.
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1. Introduction

The function f : I C (0,00) — (0,00) is called GG-convexr on the interval I
of real umbers R if [4]

F @29 <[P @P M @) (1)
for any x, y € I and A € [0,1]. If the inequality is reversed in (1) then the
function is called GG-concave.

This concept was introduced in 1928 by P. Montel [53], however, the roots of
the research in this area can be traced long before him [54].

It is easy to see that [54], the function f: T C (0,00) — (0,00) is GG-convez
if and only if the the function g : InI — R, g =Inof oexp is convex on In [.

It is known that [54] every real analytic function f(z) = > 7 ; ¢,2™ with non-
negative coefficients ¢, is a GG-convex function on (0,r), where r is the radius
of convergence for f. Therefore functions like exp, sinh, cosh are GG-convex on

R, tan, sec, csc, % — cot x are GG-convex on (O, g) and ﬁ, In ﬁ or %f—i are
GG-convex on (0,1). Also, the T' function is a strictly GG-convex function on

[1,00).

It is also known that [54], if a function f is GG-convex, then so is z®f# (z)
for all @« € R and all 8 > 0. If f is continuous, and one of the functions f(x)*
and f(e!/'°9%) is GG-convex, then so is the other.
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Recently [30], we obtained the following weighted inequality:

Theorem 1.1. Let f : [a,b] C (0,00) — (0,00) be a GG-convex function on
[a,b] and w : [a,b] — [0,00) an integrable function on |a,b], then

o [ w () In tdt
/(e () »

. [Pw (8)In f (¢) dt
Sep( [l d )

Sb w(t) In tar Sb w(t) In tdt
JP w(t)dt S w(t)dt

< [f @) TR (@) e

One can observe that, by the weighted geometric mean - arithmetic mean
inequality

Inb— —Ina

A< (1=Na+ M3, a,f>0and Xe0,1],

we have the further upper bound

o La w0 It L
[f (a)} Inb—Ina [f (b)] mb—Ina
b b
Inp— dow®Intdt Jow®)ntdt
Sl w(t)dt SPw(t)dt
- < b).
- Inb—1Ina fla)+ Inb—1Ina @)

We define the p-logarithmic mean of two positive numbers a, b by

bp+17ap+1 % .
(@Tl)(b—a)) ifb#a,

bif b = a.

L, (a,b) =

In particular, by taking w (t) = ¢? in (2), we have for any GG-convex function
f:la,b] C (0,00) — (0,00) that

[ (12 (@t 01)]77) ey 3)

b
< exp (bla/ tplnf(t)dt>

L(aPt1 pp+1)_gp+1 bp+1,L(ap+1,bp+1

<[f(a)] @DEa [f(b)] @FOeEa |

for any p € R with p # 0, —1.
We recall that the logarithmic mean is defined by L (p,q) := ﬁ if p#gq

and L (p,p) :=p.
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If p = 0, namely we take w (t) = 1 in (2), then we get

b—L(a,b) L(a,b)—a

1 b
f(I(a,b)) <exp <ba/ In f (t) dt) <[f®)] 7 [f(a)] *= (4)

that has been obtained by Mitroi and Spiridon in [52].

If p = —1, namely we take w (t) = 1 in (2), then we get

b
f(m)gexp< L /h”;(t)dt>s F@ 7. (5)

Inb—1Ina

If p =1 in (18) then we also have

f( I(a2762)) < exp <b_1a /:ﬂnf(t) dt) (6)

A(a,b)L(a,b)—a? b2— A(a,b)L(a,b)

< [f (@) RS ()

We recall that the identric mean is defined by I (a,b) := % (2—2) " for b # a
and I (a,a) := a.
We also recall the classical Hermite-Hadamard inequality that states that

for any convex function f : [a,b] — R.

For related results, see [1]-[21], [24]-[31], [32]-[41] and [42]-[57].

Motivated by the above results we establish here some new weighted inte-
gral inequalities of Hermite-Hadamard type for GG-convex functions defined on
positive intervals. Applications for special means are also provided.

2. New Results for General Weights
We have:

Theorem 2.1. Let f : [a,b] C (0,00) — (0,00) be a GG-convex function on
[a,b] and w : [a,b] — [0,00) an integrable function on |a,b], then

f(Vab) < (faw(” (%) dt) < JF@TO (8)

[Pw (t) dt
for any p > 0.
Proof. From the definition of GG-convex functions we have
fE) <@ 1)) 9)
and
F@y ) <@ @) (10)

for any x,y € [a,b] and X € [0,1].



158 S.S. Dragomir

By multiplication of (9) with (10) we get

F 29 F M) < f) fy)

for any z,y € [a,b] and X € [0,1].
Therefore
F(a'720) f (') < f(a) f (D) (11)
for any A € [0,1].
From (9) we also have

f(WVay) <V f (@) fy) (12)

for any z,y € [a,b].
By taking z = a'=*b*, y = a*b'~* in (12) and then squaring we get

72 (Vab) < f (a'20) £ (a0 ). (13)

Since for any ¢ € [a,b] there is a unique A € [0,1] such that ¢t = a'=*b*, we
obtain from (11) and (13) that

r(van) <o (9) < rwiw (1)

for any t € [a, ] .
If we take the power p > 0 in (14), multiply by w (¢) > 0 for ¢t € [a,b] and
integrate, we get

b b
7% (Vab) / w(t)dt < / w (t) f7 () 7 (‘f) dt (15)
b
<r@ro [ wd
that is equivalent to
’ Jaw(®) f7 @) 7 (Pt _ o
12 (\/E) < ot < fP(a) /7 (b) (16)
and by taking the power i we get the desired result (8). O
We observe that for p = 1 we get the inequality
Jrw ) £ ) £ () dr)*
7 (Vab) < ( Pod < VF(@)f ). (7)
while from p = % we get
L w () F (@) f (P)dt
f (Vab) <! O i@, (18)

[P (t) dt



Weighted Integral Inequalities for GG-Convex Functions 159

If we take p = 1 in (8), then we get
2

Jw (@) F @) F (%) dt
f(m)g( P )s F(a) F (0). (19)

Using Jensen’s inequality for the power p > 1 (p € (0,1)), namely
(ffw(x)g(x) dw)” < (3) e @ @ do
f(fw (x) dw - f;w (x)dz
we can state the following more precise result:

Corollary 2.2. Let f : [a,b] C (0,00) — (0,00) be a GG-convex function on
[a,b] and w : [a,b] — [0,00) an integrable function on [a,b].
(i) If p > 1, then

bw @ %
()« (Extzs e
(

)di
< (f w20 f (“t)dt> <T@
JPw(t)d
(i1) If p € (0,1), then

f(M)s(f wlt

) [P (t) f7 (%
faw(t
fyw(®) @) f(2)d >

g( o ) <V f(a) f(b).

If we take in Corollary 2.2 w(t) = 1, t € [a,b], then for any f : [a,b] C
(0,00) = (0,00) a GG-convex function, we have for p > 1 that

< <b_1a /abf(t)f (?) clﬁ)é (22)

L
2

< (bfa/:fwwfp (f)&) < VF@F)

and for p € (0,1), that

(21)

a.‘@
~—
&
\/

1

< (bf / Cpr g (f) dt) ! (23)
< (bla/abm)f(ib)dt)% <VF@ 7).
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If we take in Corollary 2.2 w (t) = %, t € [a,b], then for any f : [a,b] C
(0,00) = (0,00) a GG-convex function, we have for p > 1 that

f(ﬁ> <lnb—lna/ L QT ) (24)

b ¢p p (ab ﬁ
= <1nb11naL F mdt) SVAOHO

and for p € (0,1), that

f(ﬁ) <1nb—1na/ L a? >2p (25)

a

<lnb lna/f tdt) SRCACRACL

If we take p = = in the first inequality in (25), then we get

f(\r Inb — lna/ \/ ab dt (26)

that has been obtained by Iscan in [45].

Theorem 2.3. Let f : [a,b] C (0,00) = (0,00) be a GG-convex function on
[a,b] and w : [a,b] — [0,00) an integrable function on |a,b], then

. [P w () In tdt
(e () o

o [Pw () In £ (t) dt
: p( [ r)de )

)lnb lna

< f;w()f()dt <[f(a)]lnb>lnb e (
> f ()dt — [f (b)]lna
ja w(t) In tdt f: ln idi
1nb_ W f( )+ f], w(t)dt —
- nb—Ina “ nb—Ina

Proof. If we use Jensen’s inequality for the exponential function and nonnegative
weight w, we have

exp<ffu}(t)lnf(t)dt> . 2w (8) exp (In £ (1)) dt

b w(t) dt [Pw (t)dt
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[Pw(t) £ (t)dt
[w (t)dt

)

and the second inequality in (27) is proved.
Let t = a'=*b* € [a,b] with A € [0,1], then A = =12 By the GG-convexity
of f we have

FO) =f (@) < [f @ [F o) (28)

= [ (@) ¥ [ () W5

_(B@\ T ()
B ([f(b)]h‘“> <f(a)>
lnb—lntf(a>+ i;lé—lnaf(b)

“Inb—1Ina —Ina

for any ¢ € [a,b].
Now, if we take the weighted integral mean in (28), then we get the last part
of (27). O

By choosing w (t) =1, ¢t € | , we deduce

f (exp (b ln tdt))
Sexp(b /lnf( dt)

<1 /bf(t)dt<<[f(a)]lnb>lnb ( n

) Thb—Ina
[f (B)]™°

b
Inb— 2 ["Intdt Lfblntdt—lna
< b—a Ja b—a Ja
- ( Inb—1Ina )f(a)+ < Inb—1Ina 1),

and since ;= f Intdt =1nT (a,b), hence

b
[ (I (a.h)) < exp <bl [wra dt) (29)
N e s ff f(Z) it di
S —CL/ f < ( )]lna> (f( ))_
[f ()] b—a
Inb—1In/(a,b) In!(a,b) —Ina
~— Inb-—Ina fla)+ Inb—1Ina F(b)-
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b1
=1 t)dt
Sexp<fa {n/ (1 )
1
Ja dt
b1 i (01 (f(b))lnb“—fna p
cJeif®dt _ ([f(a)] o 7@
T e Ao [P (t) dt
nb— L illndttdt S %llndttdt —1Ina
_ Ja t7" a t b )
- Inb—1Ina fla)+ Inb—1Ina F®)
This is equivalent, after suitable calculations, to
1 b1
< _— —1 1
f(\/%> = oxXp <1nb—1na/a t nf(t)dt) (31)

b
< iiema | Pwasiu@.so) (< 9T,

The third inequality in (31) has been obtained in a different way by Iscan in
[45].

3. Other Weighted Inequalities
We have:

Theorem 3.1. Let f : [a,b] C (0,00) — (0,00) be a GG-convex function on [a, b]
and w : [a,b] — [0,00) an integrable function on [a,b] and such that w (%) =
w (t) for any t € [a,b]. Then we have the inequalities

b a8) 4 () In
£ (Vab) < exp <§f (L+ E)w(g);tf (“dt) <VF@Im. (32

Proof. By taking the log in (14) we get

21n f (Vab) <1nf(t)+1nf<ib> <lInf(a)+Inf(b) (33)

for any ¢ € [a,b].
If we multiply (33) by w () > 0 with ¢ € [a,b] and use the fact that w (%) =
w (t) for any ¢ € [a,b], then we get

2w (#)In f (m) <w(®)Inf(t) +w (“;’) In f (“;’) (34)
<w(t) I f (a) +In f (B)
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for any ¢ € [a,b].
If we integrate the inequality (34) on [a, b] we get

2n f (\/%) / " (t) dt (35)

a

< [wtmrs [o(@)ur (L)

b

< [Inf(a)+1Inf () / w (t) dt.

a

By changing the variable u = “Tb, we have dt = —Z—gdu and
b a
b b b
Aw(i)lnf(i)dt = —/b w(u)lnf(u)%du
b
b
= / w (t)1n f (¢) (Z—th

and by (35) we get

21nf(\/%)/b

a

b

w(t)dtg/bw(t)lnf(t)dt—&—/ w(t)lnf(t)%bdt

b
< g @)+ f 0 [ wie)dr
which is equivalent to the desired result (32). O

If we take in (32) w(t) =1, ¢ € [a,b], then we get

b ab n
£ (Vab) < exp (;f (Lt 5)! f(t)dt)g F@rm.  (36)

b—a

ab

Another example of weight w that satisfies the condition w (7) = w (t) for any

tela,b]is w(t) = ‘1n(@)‘,withte [a,b] C (0,00).

The following result also holds:

Theorem 3.2. Let f : [a,b] C (0,00) — (0,00) be a GG-conver function on [a, b]
and w : [a,b] = [0,00) an integrable function on [a,b] and such that w (%) =
w (t) for any t € [a,b]. Then we have the inequalities

f(\/@ “ e O Lo (8)In f (t) dt
- Ju dw (t)dt
Proof. From (33) for t = a’~*b* with A € [0,1], we have
2In f (\/%) <lnf (a2 +Inf (a*'*) <Inf(a) +1nf(b) (38)

) <V f(a)f (). (37)

for any A € [0,1].
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Since w (%) = w (t) for any t € [a,b], then w (a'~*b*) = w (a*b*~*) for any
A € [0,1] and by (38) we have

2In f ( ) (a' b (39)
<w ( 1= ’\bk) In f (al_/\b”\) +w (axbl_/\) In f (axbl_/\)
<w (a0 [In f (a) +1n f (b)]

for any A € [0,1].
Integrating the inequality over A € [0, 1] we have

1
2In b 17252 dA 40
f(\/a7>/o w (a ) (40)
1 1
S/ w (a0 In £ (7707 dA+/ w (@0 ) In f (a*b' ) dA
0 0

<[lnf(a)+1nf(b)] /0 w (a7 M) dA

and since

1 1
/ w (@' M In f (a'0Y) dA = / w (a*b' ) In f (') dA,
0 0
hence by (40) we get

N Jy w (a" 202 In f (a20Y) dA
1 f( ) fol'w((ﬂ*)‘b)‘) X

By changing the variable a!~*b* = ¢, then (1 — A\)Ina + AInb = Int which gives
that

<m(VI@F®). (@)

\— Int—1Ina

Inb—1lna’

Therefore d\ = %dt,

1 b
/O w (@'Y In f (') d\ = m/a %w (t)In f (t)dt
and
/1 w (a'0Y) d\ = - /b L (t) dt
0 Inb—1Ina J, t
and by (41) we get the desired result (37). O

If we take in (37) w(t) =1, ¢ € [a,b], then we recapture (5).
If we take in (37)

w(t) =

\/% Ina+1Inb
In =|lnt — ——

2
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and since
b b
1 1 Inb
/ fw(t)dt:/ Sl et moly
a t a 2
b
:/ g matiblg,
a
Inb Ina+1Inb 1 9
:/ z————"ldr=-(Inb—Ina)
Ina 2 4
then we get
1 b1 b
Z(lnb—lna)ﬁnf(x/%) g/ - | <‘/E> In f (t) dt (42)

i(lnb lna)an( f(a)f(b)> :
We also have:

Theorem 3.3. Let f : [a,b] C (0,00) — (0,00) be a GG-convex function on [a b]
and w : [a,b] — [0,00) an integrable function on |a,b] and such that w (% by =
w (t) for any t € [a,b]. Then we have the inequalities

1+ B w®)inf @) dt
f (\/@) < exp (2. o ) »

w05 7 (P

N [Pw (1) dt

<\/bfbw WO gt [* 4 o

B faw()dt

<1ff(1+%§)w(t)f(t>dt

2 ffw(t)dt ’

Proof. As in the proof of Theorem 3.1 we have

;/ab (1—&—?3)w(t)lnf(t)dt:/abw(t)ln f(t)f(ab>dt

Then by Jensen’s inequality for the exponential and the weight w we have

ex <1 LB 1nf(t)dt>
"\ S2w(t) de

:wp‘ﬁww £ (0 ()dt
S w (e)de
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Jlw(tyexp (In/f () F (%)) dt by, 2
3 ( () w7 () ar

T

- [Pwt)dt a [Pw () dt

that proves the second part of (43).
By Cauchy-Bunyakowsky-Schwarz inequality and the property of w we have

_ \//bw(t)f(t)dt o (?) / (ab> “

/ (t) f () dt,

which proves the third inequality in (43).
By the geometric mean - arlthmetlc mean inequality we also have

\/ab/bw(tiéf(t)dt/abw(t)f(t)dt
( / / w(t)f(t)dt>
<1+ ) t) dt
(

that proves the last part of (43). O

l\.')\»—t

If we take w (t) = 1, t € [a,b] in (43), then we get

f(ﬁ)<exp<a)1_/b< ab)lnf() ) (44)

ab

dt

o / df/f

gﬁ/ <1+(Z2b)f(t)dt.

We observe that, if in the first inequality in (23) we take p = 5, then we have

<i/ s “b d. (45)
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Therefore the first part of (44) is a refinement of (45).

4. Some Particular Cases

We consider a simple example of GG-convex functions, namely f : [a,b] C
(0,00) = (0,00), f(z) = expz. By Corollary 2.2, we have for any w : [a,b] —
[0,00) an integrable function on [a, b] , that

exp ab
exp (G (a,b)) < (f (t)bw (t+ )dt> (46)
<<f <w? [@+“ﬂhi>p§emwAWb»
for p > 1. '
(ii) If p € (0,1), then
b b
oxp (G (a.8)) < <faw(t)‘}>zl;[z(7t(t+ )] dt) (47)

- f;w (t)exp (t + %b) dt
- [Pw (t)dt

From the inequality (27) applied for the GG-convex function f : [a,b] C
(0,00) = (0,00), f () = expx we have

[P w () In tdt
= (= (5)) ®

< oxp (e @t} _ fyw B exp () dt

- frwydt )~ [w(t)dt
f:w (t) th(ab) gt ox alnb—blna

: f;w(t)dt ( Inb—1Ina )’

for any w : [a,b] — [0,00) an integrable function on [a,b].
If w : [a,b] — [0,00) an integrable function on [a,b] and such that w (%) =
w (t) for any t € [a,b], then from (32) and (37) we get

)<mmwm.

b a
G (a,b) < % /s (1f+ b())dt( Jdt _ <A (49)
and )
Glab) < Ja® B iy, (50)
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