참고문헌
- Scrosati, B., Hassoun, J., Sun, Y.-K., 'Lithium-Ion Batteries. A Look into the Future', Energy Environ. Sci. 4, 3287-3295 (2011). https://doi.org/10.1039/c1ee01388b
- Armand, M., Tarascon, J.-M., 'Building Better Batteries', Nature 451, 652 (2008). https://doi.org/10.1038/451652a
- Liu, C., Li, F., Ma, L. P., Cheng, H. M., 'Advanced Materials for Energy Storage', Adv. Mater. 22, E28-E62 (2010). https://doi.org/10.1002/adma.200903328
- Ryou, M. H., Lee, Y. M., Park, J. K., Choi, J. W., 'Mussel-Inspired Polydopamine-Treated Polyethylene Separators for High-Power Li-Ion Batteries', Adv. Mater. 23, 3066-3070 (2011). https://doi.org/10.1002/adma.201100303
- Ryou, M.-H., Lee, J.-N., Lee, D. J., Kim, W.-K., Jeong, Y. K., Choi, J. W., Park, J.-K., Lee, Y. M., 'Effects of Lithium Salts on Thermal Stabilities of Lithium Alkyl Carbonates in Sei Layer', Electrochim. Acta 83, 259-263 (2012). https://doi.org/10.1016/j.electacta.2012.08.012
- Lu, D., Tao, J., Yan, P., Henderson, W. A., Li, Q., Shao, Y., Helm, M. L., Borodin, O., Graff, G. L., Polzin, B., 'Formation of Reversible Solid Electrolyte Interface on Graphite Surface from Concentrated Electrolytes', Nano Lett. 17, 1602-1609 (2017). https://doi.org/10.1021/acs.nanolett.6b04766
- Besenhard, J., Yang, J., Winter, M., 'Will Advanced Lithium-Alloy Anodes Have a Chance in Lithium-Ion Batteries?', J. Power Sources 68, 87-90 (1997). https://doi.org/10.1016/S0378-7753(96)02547-5
- Megahed, S., Ebner, W., 'Lithium-Ion Battery for Electronic Applications', J. Power Sources 54, 155-162 (1995). https://doi.org/10.1016/0378-7753(94)02059-C
- Xu, K., 'Nonaqueous Liquid Electrolytes for Lithium- Based Rechargeable Batteries', Chem. Rev. 104, 4303-4418 (2004). https://doi.org/10.1021/cr030203g
- Endo, M., Kim, C., Nishimura, K., Fujino, T., Miyashita, K., 'Recent Development of Carbon Materials for Li Ion Batteries', Carbon 38, 183-197 (2000). https://doi.org/10.1016/S0008-6223(99)00141-4
- Park, G., Nakamura, H., Lee, Y., Yoshio, M., 'The Important Role of Additives for Improved Lithium Ion Battery Safety', J. Power Sources 189, 602-606 (2009). https://doi.org/10.1016/j.jpowsour.2008.09.088
- Ota, H., Shima, K., Ue, M., Yamaki, J.-i., 'Effect of Vinylene Carbonate as Additive to Electrolyte for Lithium Metal Anode', Electrochim. Acta 49, 565-572 (2004). https://doi.org/10.1016/j.electacta.2003.09.010
- Izatt, R. M., Bradshaw, J. S., Nielsen, S. A., Lamb, J. D., Christensen, J. J., Sen, D., 'Thermodynamic and Kinetic Data for Cation-Macrocycle Interaction', Chem. Rev. 85, 271-339 (1985). https://doi.org/10.1021/cr00068a003
- Burns, J., Krause, L., Le, D.-B., Jensen, L., Smith, A., Xiong, D., Dahn, J., 'Introducing Symmetric Li-Ion Cells as a Tool to Study Cell Degradation Mechanisms', J. Electrochem. Soc. 158, A1417-A1422 (2011). https://doi.org/10.1149/2.084112jes
- Lin, F., Nordlund, D., Weng, T.-C., Zhu, Y., Ban, C., Richards, R. M., Xin, H. L., 'Phase Evolution for Conversion Reaction Electrodes in Lithium-Ion Batteries', Nat. Commun. 5, 3358 (2014). https://doi.org/10.1038/ncomms4358
- Amatucci, G., Tarascon, J., Klein, L., 'Cobalt Dissolution in Licoo2-Based Non-Aqueous Rechargeable Batteries', Solid State Ionics 83, 167-173 (1996). https://doi.org/10.1016/0167-2738(95)00231-6
- Eriksson, T., Andersson, A., Gejke, C., Gustafsson, T., Thomas, J. O., 'Influence of Temperature on the Interface Chemistry of Li X Mn2o4 Electrodes', Langmuir 18, 3609-3619 (2002). https://doi.org/10.1021/la011354m
- Yoon, T., Park, S., Mun, J., Ryu, J. H., Choi, W., Kang, Y.-S., Park, J.-H., Oh, S. M., 'Failure Mechanisms of Lini0. 5mn1. 5o4 Electrode at Elevated Temperature', J. Power Sources 215, 312-316 (2012). https://doi.org/10.1016/j.jpowsour.2012.04.103
- Komaba, S., Kumagai, N., Kataoka, Y., 'Influence of Manganese (Ii), Cobalt (Ii), and Nickel (Ii) Additives in Electrolyte on Performance of Graphite Anode for Lithium-Ion Batteries', Electrochim. Acta 47, 1229-1239 (2002). https://doi.org/10.1016/S0013-4686(01)00847-7
- Kalluri, S., Yoon, M., Jo, M., Liu, H. K., Dou, S. X., Cho, J., Guo, Z., 'Feasibility of Cathode Surface Coating Technology for High-Energy Lithium-Ion and Beyond- Lithium-Ion Batteries', Adv. Mater. 29, 1605807 (2017). https://doi.org/10.1002/adma.201605807
- Son, B., Ryou, M.-H., Choi, J., Kim, S.-H., Ko, J. M., Lee, Y. M., 'Effect of Cathode/Anode Area Ratio on Electrochemical Performance of Lithium-Ion Batteries', J. Power Sources 243, 641-647 (2013). https://doi.org/10.1016/j.jpowsour.2013.06.062