DOI QR코드

DOI QR Code

Analysis on Adhesion Properties of Composite Electrodes for Lithium Secondary Batteries using SAICAS

SAICAS를 이용한 리튬이차전지용 복합전극 결착특성 분석

  • Byun, Seoungwoo (Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST)) ;
  • Roh, Youngjoon (Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST)) ;
  • Jin, Dahee (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Ryou, Myung-Hyun (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Lee, Yong Min (Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST))
  • 변승우 (대구경북과학기술원 에너지공학전공) ;
  • 노영준 (대구경북과학기술원 에너지공학전공) ;
  • 진다희 (한밭대학교 화학생명공학과) ;
  • 유명현 (한밭대학교 화학생명공학과) ;
  • 이용민 (대구경북과학기술원 에너지공학전공)
  • Received : 2018.03.28
  • Accepted : 2018.04.24
  • Published : 2018.05.31

Abstract

Although the adhesion properties of composite electrodes are important for securing long-term reliability and realizing high energy density of lithium secondary batteries, related research has not been carried out extensively due to the limitation of measurement technology. However, surface and interfacial cutting analysis system(SAICAS), which can measure the adhesion properties while cutting and peeling a coating layer of $1{\sim}1000{\mu}m$ thickness, has been developed and applied for analyzing the adhesion properties of composite electrodes for lithium secondary batteries. Thus, this review presents not only the principle and measurement method of SAICAS but also comparison results between SAICAS and conventional peel test. In addition, application examples of SAICAS are introduced in the study of electrode design optimization, new binder derivation study, and binder distribution in composite electrode. This suggests that SAICAS is an analytical method that can be easily applied to investigate the adhesion properties of composite electrodes for lithium secondary batteries.

복합전극의 결착특성은 리튬이차전지의 장기신뢰성 확보와 고에너지밀도 구현을 위한 중요한 물성임에도 불구하고, 측정 기술의 한계로 관련 연구가 제한적이었다. 하지만, $1{\sim}1000{\mu}m$ 두께의 코팅층을 절삭 및 박리하면서 결착특성을 측정할 수 있는 SAICAS(Surface And Interfacial Cutting Analysis System)란 장비의 출현으로 전극 결착특성 연구가 활발해지고 있다. 따라서, 본 총설에서는 SAICAS를 이용한 복합전극의 결착특성 분석 원리 및 측정 방법뿐만 아니라, Peel Test와 같은 기존 결착특성 분석 방법과 비교함으로써 SAICAS를 이용한 분석 방법의 신뢰성 검증 결과를 제시한다. 또한, 전극 설계의 최적화, 신규 바인더 도출 연구, 복합전극 내 바인더 분포 등의 연구에서 SAICAS가 적용된 사례를 소개한다. 이를 통해 SAICAS를 이용한 분석 방법이 리튬이차전지용 복합전극의 결착특성 분석에 용이하게 적용될 수 있음을 제안한다.

Keywords

References

  1. J.-M. Tarascon, 'Issues and challenges facing lithium batteries', Nature, 414, (2001).
  2. M. Armand, J.-M. Tarascon 'Building better batteries', Nature, 451, (2008).
  3. B. Scrosati, J. Hassoun, Y.-K. Sun, 'Lithium-ion batteries. a look into the future', Energy Environ. Sci., 4, (2011).
  4. T. H. Kim, J. S. Park, S. K. Chang, S. Choi, J. H. Ryu, H. K. Song, 'The current move of lithium ion batteries towards the next phase', Adv. Energy Mater., 2, (2012).
  5. Y.-H. Chen, C.-W. Wang, X. Zhang, A. M. Sastry, 'Porous cathode optimization for lithium cells: ionic and electronic conductivity, capacity, and selection materials', J. Power Sources, 195, (2010).
  6. S. Byun, J. Park, W. A. Appiah, M.-H. Ryou, Y. M. Lee, 'The effects of humidity on the self-discharge properties of $Li(Ni_{1/3}Co_{1.3}Mn_{1/3})O_2$/graphite and $LiCoO_2$/graphite lithium-ion batteries during storage', RSC Adv., 7, (2017).
  7. J. Park, W. A. Appiah, S. Byun, D. Jin, M.-H. Ryou, Y. M. Lee 'Semi-empirical long-term cycle life model coupled with an electrolyte depletion function for large- format graphite/$LiFePO_4$ lithium-ion batteries', J. Power Sources, 356, (2017).
  8. B. Son, M.-H. Ryou, J. Choi, T. Lee, H. K. Yu, J. H. Kim, Y. M. Lee 'Measurement and analysis of adhesion property of lithium-ion battery electrodes with SAICAS', ACS Appl. Mater. Interfaces, 6, (2014).
  9. T. Yoon, S. Park, J. Mun, W. Choi, Y.-S. Kang, J.-H. Park, S. M. Oh, 'Failure mechanisms of $LiNi_{0.5}Mn_{1.5}O_4$ electrode at elevated temperature', J. Power Sources, 215, (2012).
  10. Y. K. Jeong, T.-W. Kwon, I. Lee, T.-S. Kim, A. Coskun, J. W. Choi, 'Millipede-inspired structural design principle for high performance polysaccharide binders in silicon anodes', Energy Environ. Sci., 8, (2015).
  11. Y. K. Jeong, T.-W. Kwon, I. Lee, T.-S. Kim, A. Coskun, J. W. Choi, 'Hyperbranced b-cyclodextrin polymer as an effective multidimensional binder for silicon anodes in lithium rechargeable batteries', Nano Lett., 14, (2014).
  12. W. Haselrieder, B. Westphal, H. Bockholt, A. Diener, S. Hoft, A. Kwade, 'A measuring the coating adhesion strength of electrodes for lithium-ion batteries', Int. J. Adhes. Adhes., 60, (2015).
  13. H. Jeon, J. Choi, M.-H. Ryou, Y. M. Lee, 'Comparative study of the adhesion properties of ceramic composite separators using a surface and interfacial cutting analysis system for lithium-ion batteries'. ACS Omega, 2, (2017).
  14. S. T. Gonczy, N. Randall, 'An ASTM standard for quantitative scratch adhesion testing of thin, hard ceramic coatings', Int. J. Appl. Ceram. Technol., 2, (2005).
  15. J. Choi, K. Kim, J. Jeong, K. Y. Cho, M.-H. Ryou, Y. M. Lee, 'Highly adhesive and soluble co-polyimide binder: improving the long-term cycle life of silicon anodes in lithium-ion batteries', ACS Appl. Mater. Interfaces, 7, (2015).
  16. D. Song, S. H. Lee, K. Kim, M.-H. Ryou, W. H. Park, Y. M. Lee, 'Soluble polyimide binder for silicon electrodes in lithium secondary batteries', Appl. Chem. Eng., 26, (2015).
  17. K. Kim, S. Byun, J. Choi, S. Hong, M.-H. Ryou, Y. M. Lee, 'Elucidating the polymeric binder distribution within lithium-ion battery electrodes using SAICAS', Chem. Phys. Chem., (2018) DOI: 10.1002/cphc.201800072R1.
  18. K. Kim, S. Byun, I. Cho, M.-H. Ryou, Y. M. Lee, 'Three-dimensional adhesion map based on surface and interfacial cutting analysis system for predicting adhesion properties of composite electrode'. ACS Appl. Mater. Interfaces, 8, (2016).
  19. M.-H. Ryou, J. Kim, I. Lee, S. Kim, Y. K. Jeong, S. Hong, J. H. Ryu, T.-S. Kim, J.-K. Park, J. W. Choi, 'Mussel-inspired adhesive binders for high-performance silicon nanoparticle anodes in lithium-ion batteries', Adv. Mater., 25, (2013).
  20. A. Magasinski, B. Zdyrko, I. Kovalenko, B. Hertzberg, R. Burtovyy, C. F. Huebner, T. F. fuller, I. Luzinov, G. Yushin, 'Toward efficient binders for Li-ion battery Si- based anodes: polyacrylic acid', ACS Appl. Mater. Interfaces, 2, (2010).
  21. J. Oh, D. Jin, K. Kim, D. Song, Y. M. Lee, M.-H. Ryou, 'Improving the cycling performance of lithium-ion battery Si/graphite anodes using a soluble polyimide binder', ACS Omega, 2, (2017).
  22. D. Song, D. Jung, I. Cho, M.-H. Ryou, Y. M. Lee, 'Mussel-inspired polydopamine-functionalized super-p as a conductive additive for high-performance silicon anodes', Adv. Mater. Inter., 3, (2016).
  23. I. Cho, S. Gong, D. Song, Y.-G. Lee, M.-H. Ryou, Y. M. Lee, 'Mussel-inspired polydopamine-treated copper foil as a current collector for high-performance silicon anodes', Sci Rep., 6, (2016).