DOI QR코드

DOI QR Code

A Study on the Investment Efficiency of Korean ETFs

한국상장지수펀드(ETF)의 투자효율성에 관한 연구

  • Jung, Hee-Seog (Division of Business Administration, Sungkyul University)
  • Received : 2018.04.03
  • Accepted : 2018.05.20
  • Published : 2018.05.28

Abstract

The purpose of this study is to analyze the Korean ETF market, which is experiencing a rapid increase in the number of stocks, to identify the degree of investment efficiency and to present investment directions. The methodology and procedure are ETF yield, change trends, correlation and regression analysis of the ETFs traded between 2010 and 2018. As a result, the total return of domestic ETFs was 3.51%, which was lower than the KOSPI growth rate and the return on equity ETFs was 4.03%, which was low. Leverage ETF yields were below 3%, which was low. The return on bond and currency ETFs was less than 1%. The most profitable ETFs were index ETFs, followed by domestic and leveraged ETFs. This study has contributed to establishing considerations when purchasing ETFs from the viewpoint of investors. Future research will present the direction of ETF investment more precisely.

종목 수가 급증하고 있는 한국 ETF 시장을 분석하여 투자효율성이 어느 정도 인가를 규명하여 ETF 투자자들에게 투자방향을 제시하는 것이 연구목적이다. 연구절차와 방법은 2010년~2018년에 거래된 ETF를 대상으로 국내ETF 및 해외 ETF, 기초자산, 추적배수의 종류별로 수익률 결과 및 변화추이, 상관관계, 회귀분석을 하였다. 연구결과, 국내 ETF의 전체 수익률은 3.51%로서 코스피 상승률 보다 낮았으며, 주식 ETF 수익률도 4.03%로서 코스피 상승률 보다 낮았다. 레버리지 ETF 수익률도 3%이하여서 투자자들이 기대했던 수익률 보다 낮았으며, 채권 ETF와 통화 ETF의 수익률은 1%이하였고, 인버스 ETF 수익률은 마이너스를 보였다. 가장 수익률이 높은 것은 인덱스 ETF였고, 다음은 국내주식 ETF, 레버리지 ETF, 해외 ETF 순이다. 연구기여도는 투자자 입장에서 실제로 달성 가능한 투자효과를 분석하여 ETF를 매입할 때 고려사항을 정립한 데 기여하였고, 향후연구방향은 ETF 자료를 많이 축적해서 ETF 투자방향을 더 정밀하게 제시하고자 한다.

Keywords

References

  1. D. E. Sherrill, S. E. Shirley & J. R. Stark. (2016). Actively managed mutual funds holding passive investments: What do ETF positions tell us about mutual fund ability?. Journal of Banking and Finance, 76, 48-64.
  2. F. Pizzutilo & F. Calo. (2013). Market Neutral Diversification for Individual European Investors : A Risk-Return Improving Strategy Under the Sand and an Appealing Niche for the ETF Industry. International Research Journal of Finance and Economics, 104, 179-186.
  3. G. Deng, T. Dulaney, C. McCann & M. Yan. (2014). Crooked Volatility Smiles: Evidence from Leveraged and Inverse ETF Options. Journal of Derivatives and Hedge Funds, 19, 278-294.
  4. J. Chen, J. F. Diaz, & Y. F. Huang. (2013). High Technology ETF Forecasting : Application of Grey Relational Analysis and Artificial Neural Networks. Frontiers in Finance and Economics, 10(2), 129-155.
  5. L. R. Piccotti. (2014). ETF premiums and liquidity segmentation. Financial Review, 53, 117-152.
  6. S. I. Ivanov, J. Whitworth, & Y. Zhang. (2011). The Implied Volatility of ETF and Index Options. The International Journal of Business and Finance Research, 5(4), 35-44.
  7. T. Evgeni B. (2016). Exchange Traded Funds (ETF) : History, Mechanism, Academic Literature Review and Research Perspectives. Journal of Corporate Finance Research, 38(2), 89-108.
  8. T. Leung & R. Sircar. (2014). Implied Volatility of Leveraged ETF Options. Applied Mathematical Finance, 22(2), 162-188. https://doi.org/10.1080/1350486X.2014.975825
  9. T. Vashakmadze. (2012). ETF Portfolio Rebalancing for Retail Investors. Global Academic Society Journal : Social Science Insight, 5(13), 13-22.
  10. C. S. Hur, H. C. Kang, & K. S. Eom. (2012). Price Efficiency of Exchange-Traded Funds in Korea. Journal of Money & Finance, 26(1), 39-70.
  11. C. U. Hong, S. H. Lee, & K. I. Kim. (2017). The Effect of Analysts' Earnings Forecasts Following Dividend Announcements on Stock. Journal of Convergence for Information Technology, 7(3), 105-109. https://doi.org/10.22156/CS4SMB.2017.7.3.105
  12. D. H. Kim & T. K. Park. (2017). A Study on the Investor Sentiment and Irrational Investors' Behavior Based on the Commodity ETF Market. The Korean Journal of Financial Engineering, 16(2), 87-106.
  13. H. K. Park. (2013). A study on the Tracking Error and Pricing Deviation of Equity related ETFs in Korean Markets, Doctorate thesis. Kookmin Univ, Seoul.
  14. H. K. Park, Y. J. Kwon, & C. H. Hong. (2014). A study on the Tracking Error and Pricing Deviation of Index ETFs in Korean Markets. The Korean Journal of Financial Engineering, 13(4), 21-45.
  15. J. H. Jeon. (2018). The Effect of Abnormal Investment on Analyst Earning Forecast. Journal of the Korea Convergence Society, 9(2), 207-215. https://doi.org/10.15207/JKCS.2018.9.2.207
  16. J. M. Jung. (2012). Tracking Error of ETF tracking KOSPI200. The Journal of Financial Management, 29(2), 91-124.
  17. K. S. Eom & J. h. Park. (2014). Return Distributions of KOSPI200 Index ETFs and Investors' Limited Attention. Korean Journal of Financial Studies, 43(3), 633-656.
  18. O. R. Kong. (2013). A study on Attention Effect and Asymmetric Volatility in Korea ETF Market. Doctorate thesis. Hanyang Univ, Seoul.
  19. S. G. Kim. (2017). The Effect of Management Earnings Forecasts on Future Earnings Quality. Journal of the Korea Convergence Society, 8(11), 363-372. https://doi.org/10.15207/JKCS.2017.8.11.363
  20. S. K. Kang. (2013). A study of Profitability on Arbitrage trade using ETF. Korean Journal of Financial Studies, 42(3), 619-637.
  21. S. K. Kang, Y. T. Byun, & J. h. Park. (2014). An Empirical Study on Volatility Spillover Effect among KOSPI200, Futures, ETFs Markets. Korean Journal of Futures and Options, 22(4), 675-697.
  22. S. W. Lee. (2013). The Study of Analysis on Price and Performance about Leverage ETF. The Korean Journal of Financial Engineering, 12(4), 27-48.
  23. Y. T. Byun. (2014). Hedging Performance Using KODEX200 ETF. The Thesis Journal of Korea Contents Association, 14(11), 905-914. https://doi.org/10.5392/JKCA.2014.14.11.905
  24. High Risk ETF Trust Watch(2018.3.29). JoongAngIlbo, B3.
  25. Loss Defensive Commodities of decreased Worry(2018.3.21). JoongAngIlbo, B9.