DOI QR코드

DOI QR Code

Forecasting Model of Air Passenger Demand Using System Dynamics

시스템다이내믹스를 이용한 항공여객 수요예측에 관한 연구

  • Kim, Hyung-Ho (Dept. of Information & Logistics, Sehan University) ;
  • Jeon, Jun-woo (Nanyang Technological University, Singapore) ;
  • Yeo, Gi-Tae (Graduate school of Logistics, Incheon University)
  • 김형호 (세한대학교 정보물류학과) ;
  • 전준우 (싱가폴 난양이공대학) ;
  • 여기태 (인천대학교 동북아물류대학원)
  • Received : 2018.02.20
  • Accepted : 2018.05.20
  • Published : 2018.05.28

Abstract

Korea's air passenger traffic has been growing steadily. In this paper, we propose a forecasting model of air passenger demand to ascertain the growth trend of air passenger transportation performance in Korea. We conducted a simulation based on System Dynamics with the demand as a dependent variable, and international oil prices, GDP and exchange rates as exogenous variables. The accuracy of the model was verified using MAPE and $R^2$, and the proposed prediction model was verified as an accurate prediction model. As a result of the demand forecast, it is predicted that the air passenger demand in Korea will continue to grow, and the share of low cost carriers will increase sharply. The addition of the Korean transportation performance of foreign carriers in Korea and the transportation performance of Korean passengers due to the alliance of airlines will provide a more accurate forecast of passenger demand.

우리나라의 항공여객 운송실적은 지속적으로 성장하고 있다. 본 연구에서는 우리나라 항공여객 운송 실적의 성장추이를 확인하기 위해 시스템다이내믹스를 활용한 항공여객 수요예측 모델을 제안하였다. 항공여객 수요예측은 항공여객 운송수요를 종속변수로 하고 국제항공유가, GDP 및 환율을 외생변수로 하여 시뮬레이션 하였다. 모델의 정확도는 MAPE와 $R^2$를 이용하여 검증하였고 검증 결과 제안된 예측모델은 정확한 예측모델로 확인되었다. 수요예측 결과 국적 항공사의 항공여객 처리실적은 앞으로도 지속적으로 성장하며, 특히 저비용항공사의 수송 분담률이 크게 증가할 것으로 예측되었다. 향후 한국에 진출해 있는 외국계 항공사들의 내국인 처리 실적 및 국적항공사들의 Alliance 체결에 따른 실적 등을 추가하여 보다 정확한 항공여객 수요예측 모델을 제안하고자 한다.

Keywords

References

  1. K. B. Kim & K. S. Hwang. (2012). A study on the demand forecasting and efficient operation of Jeju national airport using seasonal ARIMA model. Journal of the Korea Academia-Industrial cooperation Society, 13(8), 3381-3388. DOI : 10.5762/KAIS.2012.13. 8.3381
  2. Y. J. Kim. (2014). Study on Low Cost Carrier Demand Forecasting Using Seasonal ARIMA Model: Domestic Jeju Route.Inland Route Forecast Comparison Analysis. Journal of Tourism Studies, 26(1), 3-25. http://www.dbpia.co.kr/Article/NODE06564214.
  3. M. S. Kim. (2001). A Study on Prediction of Air Passenger Demand, Journal of Aviation Development of Korea, 2, 102-135. http://www.dbpia.co.kr/Article/NODE02070365.
  4. J. S. Yoon, N. K. Huh, S. Y. Kim & H. Y. Hur. (2010). A study on international passenger and freight forecasting using the seasonal multivariate time series models. Communications for Statistical Applications and Methods, 17(3), 473-481. DOI : 10.5351/CKSS.2010.17.3.473
  5. B. Miller & J. P. Clarke. (2007). The hidden value of air transportation infrastructure. Technological Forecasting and Social Change, 74(1), 18-35. DOI : 10.1016/j.techfore.2004.03.011.
  6. E. Suryani, S. Y. Chou & C. H. Chen. (2010). Air passenger demand forecasting and passenger terminal capacity expansion: A system dynamics framework. Expert Systems with Applications, 37(3), 2324-2339. DOI : 10.1016/j.eswa.2009.07.041
  7. J. M. Lyneis. (2000). System dynamics for market forecasting and structural analysis. System Dynamics Review, 16(1), 3. DOI : 10.1002/(SICI)1099-1727(200021)16:1<3::AID-SDR183>3.0.CO;2-5
  8. K. H. Young. (1972). A synthesis of time-series and cross-section analyses: Demand for air transportation service. Journal of the American Statistical Association, 67(339), 560-566. DOI : 10.1080/01621459.1972.10481248.
  9. H. H. Kim, J. W. Jeon & G. T. Yeo. (2017). Forecasting of Container Cargo Volumes of China using System Dynamics. Journal of Digital Convergence, 15(3), 157-163. DOI : 10.14400/JDC.2017.15.3.157
  10. H. T. Chung, K. H. Kim, H. G. Park & K. S. Lee. (2013). A Study on Networking Effects of Financial Leverage in Middle-Sized Hospitals. Journal of Digital Convergence, 11(1), 339-347. UCI : G100:I100-KOI(KISTI1.1003/JNL.JAKO201313660604416) https://doi.org/10.14400/JDPM.2013.11.12.339
  11. H. C. Kwon & J. S. Yoo. (2013). A Study on Forecasting Model of the Apartment Price Behavior in Seoul. Journal of Digital Convergence, 11(2), 175-182. UCI : G100:I100-KOI(KISTI1.1003/JNL.JAKO201313660603619) https://doi.org/10.14400/JDPM.2013.11.2.175
  12. J. C. Kim, J. S. Park, M. J. Ahn & S. W. Park. (2016). Changes in domestic air transportation market due to LCC market participation and meaning. Sejong : The Korea Transport Institute.
  13. J. C. Kim, J. S. Park, M. Y. R. Choi, J. W. Lim & J. K. Lee. (2015). Aviation Demand Forecasting Research.. Sejong : The Korea Transport Institute.
  14. Korea Civil Aviation Association. (2017. January). Aviation Market Trend & Analysis, 55, 121-166.