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PRIMITIVE IDEMPOTENTS IN THE RING F4[x]/〈xpn − 1〉
AND CYCLOTOMIC Q CODES

Sudhir Batra and Rekha Mathur

Abstract. The parity of cyclotomic numbers of order 2, 4 and 6 associ-

ated with 4-cyclotomic cosets modulo an odd prime p are obtained. Hence
the explicit expressions of primitive idempotents of minimal cyclic codes

of length pn, n ≥ 1 over the quaternary field F4 are obtained. These

codes are observed to be subcodes of Q codes of length pn. Some or-
thogonal properties of these subcodes are discussed. The minimal cyclic

codes of length 17 and 43 are also discussed and it is observed that the
minimal cyclic codes of length 17 are two weight codes. Further, it is

shown that a Q code of prime length is always cyclotomic like a binary

duadic code and it seems that there are infinitely many prime lengths for
which cyclotomic Q codes of order 6 exist.

1. Introduction

A cyclic code of length m over a finite field Fq is viewed as an ideal of
the semisimple quotient ring Rm = Fq[x]/〈xm − 1〉, where gcd(m, q) = 1.
It is well known that the ring Rm can be written as the direct sum of its
minimal ideals. So if we obtain the minimal ideals of Rm, then we can find all
the ideals of Rm and hence all the cyclic codes of length m depending upon
the different conditions imposed on m and q. Further, a minimal ideal has
an idempotent generator, called primitive idempotent, therefore there is a 1-1
correspondence between the set of primitive idempotents and the set of minimal
ideals of Rm. Thus it is quite significant to obtain the primitive idempotents of
Rm to analyze the cyclic codes of length m. In recent years a series of papers
[1–8, 10, 11, 14–16, 18, 22–24, 26, 27, 30] have been published in which primitive
idempotents of Rm with different conditions imposed on m and q have been
computed. A ceratin number of cases when m = p and q are odd primes and the
multiplicative order of q modulo p is f with gcd(p−1

f , q) = 1 and qf 6≡ 1(mod

p2) have been discussed in [25] using the theory of cyclotomic numbers. In
this paper, we consider the left case, for which we obtain the parity of all
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cyclotomic numbers of order 2, 4 and 6 associated with 4-cyclotomic cosets
modulo an odd prime p. It is little bit involved to obtain the parity of some
of these cyclotomic numbers, particularly of cyclotomic numbers of order 6.
We obtain parity of these numbers by using the classical theory of cyclotomic
numbers [28] and the fact that the ring Rp is associative and commutative (see
Theorems 3.15 and 3.18). Using the parity of cyclotomic numbers so obtained,
we obtain the explicit expressions of primitive idempotents of Rm with m = pn

and q = 4 such that the multiplicative order f of 4 modulo p is p−1
2 , p−1

4 or
p−1

6 and 4f 6≡ 1(mod p2) and 2f 6≡ 1(mod p). Unlike the approach used in
[25], we either need not to obtain cyclotomic numbers or have to obtain a few
of them to get the expressions for primitive idempotents in Rpn for various
primes p (cf. see Theorems 5.3-5.6 and Examples 5.8 and 5.9). Moreover
using the approach discussed in the paper we can obtain parity of cyclotomic
numbers associated with arbitrary l-cyclotomic cosets modulo p, where l is any
odd or even prime power with g.c.d(l, p) = 1. Thus we can obtain primitive
idempotents in the semisimple ring F2k [x]/〈xpn−1〉 for any k ≥ 1. The minimal
cyclic codes generated by primitive idempotents obtained in Theorems 5.3-5.6
are subcodes of Q codes. Q codes were first defined by V. Pless [21] and have
many properties analogous to binary duadic codes [12, 17]. In [12] Ding and
Pless defined cyclotomic duadic codes and further proved that every binary
duadic code of odd prime length is always cyclotomic. This fact enables them
to obtain the number of binary duadic codes of prime length. Analogously, we
also define cyclotomic Q codes of odd prime length and show that a Q code of
odd prime length is always cyclotomic (see Theorem 6.5). Further, in [29] it was
shown that there are infinitely many prime lengths for which binary cyclotomic
codes of order e ≥ 2 that are not quadratic residue codes, exist. Naturally, a
question arises that whether there are infinitely many primes lengths for which
cyclotomic Q codes of order e ≥ 2 that are not quaternary/quadratic residue
codes, exist. In Section 6 we give partial answer to this question particularly
for the case e = 6. In this section we also discuss some orthogonal properties
of the minimal cyclic codes generated by primitive idempotents in Section 5.
The rest of the paper is organized as follows.

In Section 2, we obtain 4-cyclotomic cosets modulo pn such that the multi-
plicative order of 4 modulo p is f = p−1

e , where e ≥ 2 and 4f 6≡ 1(mod p2) and

2f 6≡ 1(mod p) (see Theorem 2.4). In Section 3, we discuss cyclotomic num-
bers and some arithmetic properties of some families of Rp using the parity of
cyclotomic numbers. In Section 4, we obtain certain exponential sums which
are necessary to obtain the primitive idempotents. In Section 5, the explicit
expressions of primitive idempotents in Rpn are obtained as already mentioned
and two examples are given in which the minimal cyclic codes of length 17 and
43 over F4 are discussed. Here we observe that each minimal code of length 17
above is a two weight code with two non-zero weights 12 and 16 and may be
used in defining strongly regular graph and secret sharing schemes [13].
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2. Cyclotomic cosets

Throughout this paper unless otherwise stated we use the following termi-
nology and assumptions: (i) p denotes an odd prime. (ii) Fq denotes a field of
prime power order q and F4 = {0, 1, β, β2}, where β is a primitive element of
F4, that is, a cube root of unity. (iii) Om(l) denotes the multiplicative order of l
modulo m. (iv) Rpn = F4[x]/〈xpn−1〉, where n ≥ 1 and x is an indeterminate.
(v) (a, b) denotes the greatest common divisor of integers a > 0 and b > 0. (vi)
Op(4) = f = p−1

e , where e ≥ 2 is an integer and (vii) 4f 6≡ 1(mod p2) and

2f 6≡ 1(mod p). Using these assumptions, we have:

Lemma 2.1. e is an even integer.

Proof. Let R denote the set of quadratic residues modulo p. Since R is a
multiplicative group of order p−1

2 and 4 ∈ R, Op(4) divides p−1
2 . Hence p−1

f =

2(p−1
2 )/f , that is p− 1 = ef , where e is an even integer. �

Lemma 2.2. If Op(4) = f and 4f 6≡ 1 (mod p2), then Opn(4) = fpn−1 for all
n ≥ 1.

Proof. Follows on similar lines as in [25, Lemma 1, p. 655]. �

Lemma 2.3 ([9]). There always exists a g which is a primitive root modulo pn

for each n ≥ 1.

Theorem 2.4. The en+ 1 4-cyclotomic cosets modulo pn are given by

Ω0 = {0},

Ωpjgk = {pjgk, 4pjgk, . . . , 4fp
n−j−1−1pjgk},

where 0 ≤ j ≤ n − 1, 0 ≤ k ≤ e − 1 and g is a primitive root modulo pn for
each n ≥ 1.

Proof. Follows on similar lines as in Theorem 1 of [25] using Lemma 2.2 and
2.3. �

Lemma 2.5. (i) 2 ∈ Ω
p0g

e
2

,

(ii) −1 ∈ Ω
p0g

e
2

when f is odd and −1 ∈ Ωp0g0 when f is even.

Proof. Since Op(4) = f , 4f ≡ 1 (mod p). Therefore, 22f ≡ 1 (mod p). Let
Op(2) = t. Then 2f = tk1 for some positive integer k1. Also 22t ≡ 1 (mod
p), i.e., 4t ≡ 1 (mod p) which implies that t = fk2 for some positive integer
k2. Thus we have k1k2 = 2 and this is possible when k1 = 2, k2 = 1 or
k1 = 1, k2 = 2. The case k1 = 2, k2 = 1 is not possible, because of the
assumption that 2f 6≡ 1 (mod p). Hence Op(2) = 2f . Further, by assumption
4f 6≡ 1 (mod p2), 2f 6≡ 1 (mod p2), therefore working on similar lines as in

Lemma 2.2, we have Opn(2) = 2fpn−1. This obviously implies 2fp
n−1 ≡ −1

(mod pn). Now we prove (i). Since g is a primitive root modulo pn and
(4, p) = 1, so 4 ≡ gb (mod pn) for some integer b. Further by Lemma 2.2,
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Opn(4) = fpn−1. Therefore, 4fp
n−1

= gbfp
n−1 ≡ 1 (mod pn). This implies

pn−1(p − 1) divides b (p−1)
e pn−1 and which in turn implies b = et for some

integer t. Now using 4 ≡ get (mod pn) and the fact that e is even due to
Lemma 2.1 we have 2 ≡ ±g(e/2)t (mod pn). First let 2 ≡ g(e/2)t (mod pn).

Then −1 ≡ 2fp
n−1 ≡ g(e/2)tfpn−1

= gp
n−1( p−1

2 )t ≡ (−1)t (mod pn). Therefore, t

must be odd. Second let 2 ≡ −g(e/2)t (mod pn). Then the fact gp
n−1( p−1

2 ) ≡ −1

(mod pn) implies that 2 ≡ g(e/2)(t+pn−1f) (mod pn). Again using the fact that

2fp
n−1 ≡ −1 (mod pn), we get that (t+ pn−1f) is odd. Hence by Theorem 2.4,

2 ∈ Ω
p0g

e
2

, proving (i). In view of (i) above and Theorem 2.4, it is observed

that Ωp0g0 contains all even powers of 2 and Ω
p0g

e
2

contains all odd powers of

2 modulo pn. Now using the fact that 2fp
n−1 ≡ −1 (mod pn) we have that if

f is even, then −1 ∈ Ωp0g0 and if f is odd, then −1 ∈ Ω
p0g

e
2

. �

This lemma will be used in obtaining the parity of cyclotomic numbers in
Section 3 and while discussing the orthogonal properties in Section 6.

Theorem 2.6. The en+1 4-cyclotomic cosets modulo pn obtained in Theorem
2.4 can be rewritten as

Ω0 = {0},

Ωpjgk = {pjgk(4t + λp) | 0 ≤ t ≤ f − 1, 0 ≤ λ ≤ pn−j−1 − 1},

where 0 ≤ j ≤ n − 1, 0 ≤ k ≤ e − 1 and g is a primitive root modulo pn for
each n ≥ 1.

Proof. In view of Lemma 2.3, we can assume that g is a primitive root modulo
pn for n = 1, 2, . . . , n. For n ≥ 1, let

ω0 = {0},

ωjk = {pjgk(4t + λp) | 0 ≤ t ≤ f − 1, 0 ≤ λ ≤ pn−j−1 − 1},

where 0 ≤ j ≤ n− 1, 0 ≤ k ≤ e− 1.
First we claim that ∪e−1

k=0ω0k is a reduced residue system modulo pn. If not,
suppose that for some t1 6= t2, λ1 and λ2, (4t1 + λ1p) ≡ (4t2 + λ2p) (mod pn).
Then 4t1 ≡ 4t2 (mod p), which is against our supposition that Op(4) = f . If
t1 = t2 = t (say), then obviously for λ1 6= λ2, 4t + λ1p 6≡ 4t + λ2p (mod pn).
Further for any t1, t2, λ1, λ2 and i 6= 0, we must have (4t1 +λ1p) 6≡ gi(4t2 +λ2p)
(mod pn). If not so, then (4t1 + λ1p) ≡ gi(4t2 + λ2p) (mod pn), which implies
that 4t1 ≡ gi4t2 (mod p), leading to a contradiction again. Finally, note that
for each 0 ≤ i ≤ e − 1, (gi(4t + λp), pn) = 1 and |ω0i| = pn−1f , proving the
claim.

Now we claim that for any 0 ≤ t1 ≤ f − 1, 0 ≤ λ ≤ pn−1 − 1, 1 ≤ i ≤ e− 1
and 0 ≤ t ≤ fpn−1 − 1, 4t1 + λp 6≡ gi4t (mod pn) because otherwise 4t1 ≡ gi4t
(mod p), leading to a contradiction as before. Summarizing all these facts we
get that Ωp0g0 = ω00 and thus for any 0 ≤ i ≤ e − 1, giΩp0g0 = giω00, i.e.,
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Ωp0gi = ω0i. Working on similar lines, we can obtain that for any 1 ≤ j ≤ n−1
and 0 ≤ k ≤ e− 1, Ωpjgk = ωjk. This proves the theorem. �

3. Cyclotomic numbers and arithmetic properties of some families
in Rp

3.1. Throughout this section, we assume that n = 1. In view of Theorem 2.4,
we have j = 0, and so e + 1 4-cyclotomic cosets modulo p are given by (i)
Ω0 = {0}, (ii) For 0 ≤ k ≤ e− 1,

Ωgk = {gk, 4gk, . . . , 4f−1gk}.
Note that for n = 1, we take Ωp0gk = Ωgk . Further using Lemma 2.5, −1 ∈ Ωg0
when f is even and −1 ∈ Ω

g
e
2

when f is odd.

Further, Rp = F4[x]/〈xp − 1〉 and for 0 ≤ i ≤ e − 1, we assume that an
element

∑
k∈Ωgi

xk ∈ Rp is denoted by Xi.

Definition 3.2 (see [12]). Recall that p = ef+1 is a prime, and g is a primitive
root modulo p. Then the cyclotomic classes of order e are defined as C0 = (ge),
Ci = giC0, i = 1, 2, . . . , e − 1, where (ge) denotes the multiplicative group
generated by ge.

Lemma 3.3. For 0 ≤ k ≤ e− 1, {Ωgk} forms the set of cyclotomic classes of
order e.

Proof. Since g be a primitive root modulo p, gb ≡ 4 (mod p) for some integer
b, 1 ≤ b ≤ p− 2. Therefore, Op(4) = f implies that gbf ≡ 1 (mod p). Hence e
divides b. Further, since C0 = (ge) is a subgroup of (g) generated by ge and e
divides b, so 4 ≡ gb ∈ C0 and therefore, Ωg0 = {1, 4, 42, . . . , 4f−1} ⊆ C0. Now
the multiplicative order of ge being f , we have C0 = Ωg0 . It is easy to see that

Ck = gkΩg0 = Ωgk for each k, proving the lemma. �

Lemma 3.4 ([9]). ( 2
p ) =

{
1 if p = 8k ± 1,
−1 if p = 8k ± 3.

Here (·) denotes the Legendre symbol.

Lemma 3.5 (Euler’s Criterion [9]). An integer a is a quadratic residue modulo

an odd prime p if and only if a
p−1
2 ≡ 1 (mod p).

Theorem 3.6. Let Op(4) = p−1
e . Then (i) p = 8k±3 for e = 2, (ii) p = 8k+1

for e = 4 and (iii) p = 8k ± 3 for e = 6.

Proof. (i) If e = 2, then f = p−1
2 , then by our assumption 2

p−1
2 6≡ 1 (mod p).

Therefore, by Lemma 3.5, ( 2
p ) = −1 and hence by Lemma 3.4, p = 8k ± 3.

(ii) If e = 4, then f = p−1
4 , which implies that 2

p−1
2 ≡ 1 (mod p). Therefore,

by Lemma 3.5, ( 2
p ) = 1 and hence by Lemma 3.4, p = 8k + 1. The case

p = 8k − 1 is ruled out because 4 must divide p− 1.
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(iii) If e = 6, then f = p−1
6 , which implies that Op(2) = 2f = p−1

3 (see proof
of Lemma 2.5). Now suppose that 2 is a quadratic residue modulo p. Then by

Lemma 3.5, 2
p−1
2 ≡ 1 (mod p). On the other hand Op(2) = p−1

3 . Therefore,
p−1

3 must divide p−1
2 , which is not possible. Hence 2 is not a quadratic residue

modulo p, and thus by Lemma 3.4, p = 8k ± 3. �

Definition 3.7. (a) For fixed i and j, 0 ≤ i ≤ e − 1, 0 ≤ j ≤ e − 1, the
cyclotomic numbers (i, j) of order e are defined as (i, j) = |(Ci + 1) ∩ Cj |.

(b) The cyclotomic matrix is the e× e matrix N whose (i, j)th entry is the
cyclotomic number (i− 1, j − 1).

Our next few results are related to cyclotomy and parity of cyclotomic num-
bers and Theorem 3.10 and Lemmas 3.11, 3.14 and 3.17 can be obtained by
repeatedly using Lemmas 3 and 4 of [28] which are stated as Lemmas 3.8 and
3.9 respectively. However, the results in Theorem 3.10 and cyclotomic matrices
in Lemmas 3.11 and 3.14 can be taken directly from Lemma 6 and Array I of
[28] respectively.

Lemma 3.8. (a) For any integers m and n, (i, j) = (i+me, j + ne).
(b) (i, j) = (e− i, j − i).

(c) (i, j) =

{
(j, i) if f is even
((j + e

2 ), (i+ e
2 )) if f is odd.

(d)
∑e−1
j=0(i, j) = f − vi, where vi =

 1 if f is even and i = 0
if f is odd and i = e

2
0 otherwise.

(e)
∑e−1
i=0 (i, j) = f − uj, where uj =

{
1 if j = 0
0 otherwise.

Lemma 3.9. The cyclotomic numbers (0, h) are odd or even according as 2 ∈
Ch or not. In particular, exactly one of the numbers (0, j) is odd.

Theorem 3.10. (i) Suppose p = 8k + 3 and e = 2. Then f is odd and

X2
i =

f − 1

2
Xi +

f + 1

2
Xi+1 = Xi+1,

X0X1 =
f − 1

2
(X0 +X1) + f = 1.

(ii) Let p = 8k − 3 and e = 2. Then f is even and

X2
i =

f − 2

2
Xi +

f

2
Xi+1 + f = Xi+1,

X0X1 =
f

2
(X0 +X1) + f = X0 +X1,

where subscripts are taken to be non-neagtive integers modulo 2.

Here note that Lemma 6 of [28] provides O. Perron results (see Theorem 24,
Chapter 16 in [19]) for all cases, i.e., p = 4k ± 1.
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Lemma 3.11. Assume e = 4 and p = 8k + 1. Then the cyclotomic matrix is
given by 

A B C D
B D E E
C E C E
D E E B

 ,
where, A+B +C +D = f − 1, B +D + 2E = f and 2(C +E) = f . Further,

X2
i = AXi +BXi+1 + CXi+2 +DXi+3 + fx0,

XiXi+1 = BXi +DXi+1 + EXi+2 + EXi+3,

XiXi+2 = CXi + EXi+1 + CXi+2 + EXi+3,

XiXi+3 = DXi + EXi+1 + EXi+2 +BXi+3,

where subscripts are taken to be non-negative integers modulo 4.

Theorem 3.12. The parity of cyclotomic numbers of order 4 defined in the
cyclotomic matrix given in Lemma 3.11 are as follows:

(i) C is odd,
(ii) A,B,D are even,
(iii) E is even if k is odd and E is odd if k is even.

Proof. By Lemma 2.5 and Notation in 3.1, 2 ∈ Ωg2 . Therefore by Lemma 3.3,
2 ∈ C2 and hence by Lemma 3.9, C is odd and A,B,D are even, proving (i)
and (ii). By Lemma 3.11, C + E = k and by (i) C is odd and therefore (iii)
follows trivially. �

Theorem 3.13. Assume e = 4 and p = 8k + 1. Then
(i) X2

i = Xi+2,

(ii) XiXi+1 =

{
0 if k is odd
Xi+2 +Xi+3 if k is even,

(iii) XiXi+2 =

{
Xi +Xi+2 if k is odd
Xi +Xi+1 +Xi+2 +Xi+3 if k is even,

(iv) XiXi+3 =

{
0 if k is odd
Xi+1 +Xi+2 if k is even.

Proof. It follows immediately using Lemma 3.11 and Theorem 3.12. �

Lemma 3.14. Assume e = 6 and p = 8k + 3. Then the cyclotomic matrix is
given by 

A B C D E F
G H I E C I
H J G F I B
A G H A G H
G F I B H J
H I E C I G

 ,
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where A+B+C+D+E+F = f , C+E+G+H+2I = f , B+F+G+H+I+J =
f , 2A+ 2G+ 2H = f − 1. Further,

X2
i = AXi +BXi+1 + CXi+2 +DXi+3 + EXi+4 + FXi+5,

XiXi+1 = GXi +HXi+1 + IXi+2 + EXi+3 + CXi+4 + IXi+5,

XiXi+2 = HXi + JXi+1 +GXi+2 + FXi+3 + IXi+4 +BXi+5,

XiXi+3 = AXi +GXi+1 +HXi+2 +AXi+3 +GXi+4 +HXi+5 + fx0,

XiXi+4 = GXi + FXi+1 + IXi+2 +BXi+3 +HXi+4 + JXi+5,

XiXi+5 = HXi + IXi+1 + EXi+2 + CXi+3 + IXi+4 +GXi+5,

where subscripts are taken to be non-negative integers modulo 6.

Theorem 3.15. The parity of cyclotomic numbers of order 6 defined in Lemma
3.14 are as follows:

(i) D is odd, A,B,C,E, F are even,
(ii) G and H are of opposite parity,
(iii) I, J are always odd.

Proof. (i) By Lemma 2.5 and Lemma 3.4, 2 ∈ Ωg3 = C3 and therefore (i)
follows due to Lemma 3.9.

(ii) Using C +E+G+H + 2I = f due to Lemma 3.14 and (i) above we get
that G+H is odd.

(iii) (a) Let G be odd and H be even. We now evaluate X0X1X3 in Rp
by repeatedly using the expressions for XiXj given in Lemma 3.14, X0X3 =
X1 + X4 + 1 and (X0X3)X1 = X2

1 + X4X1 + X1 = X4 + X1 + X2 + X5 + 1.
X0X1 = X0 + IX2 + IX5. Let I be even, then X0X1 = X0. This implies
that, (X0X1)X3 = X4 + X1 + 1. Therefore (X0X3)X1 6= (X0X1)X3, which is
a contradiction because Rp is associative and commutative and thus I must be
odd.

Now let J be even. Then using the fact that I is odd as above and evaluating
X0X

2
2 in Rp, we have X0X2 = X2 + X4. Therefore, (X0X2)X2 = (X2 +

X4)X2 = X5 +X4 +X0, while (X0X2)X2 = X0X
2
2 = X0X5 = X1 +X4 +X5,

this leads to a contradiction, thus J must be odd.
(b) Let G be even and H be odd. We now evaluate X0X1X3 in Rp. For,

X0X3 = X2 + X5 + 1 and (X0X3)X1 = X1 + X1X2 + X1X5 = X1 + X2 +
IX3 + IX0 + IX3 + X5 + JX0. Let I and J be even, then (X0X3)X1 =
X1 + X2 + X5, X0X1 = X1. This implies that, (X0X1)X3 = X1. Therefore
(X0X3)X1 6= (X0X1)X3, which is a contradiction because Rp is associative
and commutative.

Let J be even and I be odd. Then, evaluating X0X
2
2 yet again, (X0X2)X2 =

(X0 + X4)X2 = X0X2 + X2X4 = X0 + X4 + X2 + X0 = X2 + X4. While
X0X

2
2 = X0X5 = X0 +X1 +X4, which leads to a contradiction again.

Finally, let J be odd and I be even. Then, (X0X2)X2 = (X0 + X1)X2 =
X0 +X1 +X2 and X0X

2
2 = X0X5 = X0, which leads to a contradiction again.

Hence I and J both are odd. �
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Theorem 3.16. Assume e = 6 and p = 8k + 3. Then
(i) X2

i = Xi+3,

(ii) XiXi+1 =

{
Xi +Xi+2 +Xi+5 if G is odd
Xi+1 +Xi+2 +Xi+5 if G is even,

(iii) XiXi+2 =

{
Xi+1 +Xi+2 +Xi+4 if G is odd
Xi +Xi+1 +Xi+4 if G is even,

(iv) XiXi+3 =

{
1 +Xi+1 +Xi+4 if G is odd
1 +Xi+2 +Xi+5 if G is even,

(v) XiXi+4 =

{
Xi +Xi+2 +Xi+5 if G is odd
Xi+2 +Xi+4 +Xi+5 if G is even,

(vi) XiXi+5 =

{
Xi+1 +Xi+4 +Xi+5 if G is odd
Xi +Xi+1 +Xi+4 if G s even.

Proof. It follows immediately using Lemma 3.14 and Theorem 3.15. �

Lemma 3.17. Assume e = 6 and p = 8k − 3. Then the cyclotomic matrix is
given by 

A B C D E F
B F G H I G
C G E I J H
D H I D H I
E I J H C G
F G H I G B

 ,

where A + B + C + D + E + F = f − 1, B + F + 2G + H + I = f , C + G +
E + I + J +H = f , 2D + 2H + 2I = f . Further,

X2
i = AXi +BXi+1 + CXi+2 +DXi+3 + EXi+4 + FXi+5 + fx0,

XiXi+1 = BXi + FXi+1 +GXi+2 +HXi+3 + IXi+4 +GXi+5,

XiXi+2 = CXi +GXi+1 + EXi+2 + IXi+3 + JXi+4 +HXi+5,

XiXi+3 = DXi +HXi+1 + IXi+2 +DXi+3 +HXi+4 + IXi+5,

XiXi+4 = EXi + IXi+1 + JXi+2 +HXi+3 + CXi+4 +GXi+5,

XiXi+5 = FXi +GXi+1 +HXi+2 + IXi+3 +GXi+4 +BXi+5,

where subscripts are taken to be non-negative integers modulo 6.

Theorem 3.18. The parity of cyclotomic numbers of order 6 defined in Lemma
3.17 are as follows:

(i) D is odd, A,B,C,E, F are even,
(ii) H and I are of same parity,
(iii) G and J are of same parity,
(iv) G and H are of same parity and so are I and J .

Proof. (i) By Lemma 2.5 and Lemma 3.3, 2 ∈ Ωg3 = C3 and therefore (i)
follows due to Lemma 3.9.
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(ii) Using B + F + 2G+H + I = f given in Lemma 3.17 and (i) above we
get that H + I is even.

(iii) Using the equation C + E + G + J + H + I = f given in Lemma 3.17
and (i) and (ii) above we get that G+ J is even.

(iv) On contrary suppose that G and H are of opposite parity. We now
evaluate X2

0X1 in Rp by repeatedly using the expressions for XiXj given in
Lemma 3.17.

(a) Let G be odd and H be even. Then X2
0 = X3 and so X2

0X1 = X3X1 =
X2 +X5. Also X2

0X1 = X0(X0X1) = X0(X2 +X5) = X1 +X4 +X1 +X4 = 0,
which is a contradiction, proving (iv) in this case.

(b) Let G be even and H be odd. Then X2
0 = X3 and so X2

0X1 = X3X1 =
X0 + X4. Also X2

0X1 = X0(X0X1) = X0(X3 + X4) = X0 + X1 + X2 + X3 +
X4 + X5 + X1 + X3 = X0 + X2 + X4 + X5, which is a contradiction, proving
(iv) in this case also. �

Theorem 3.19. Assume e = 6 and p = 8k − 3. Then
(i) X2

i = Xi+3,

(ii) XiXi+1 =

{
Xi+2 +Xi+3 +Xi+4 +Xi+5 if G is odd
0 if G is even,

(iii) XiXi+2 =

{
Xi+1 +Xi+3 +Xi+4 +Xi+5 if G is odd
0 if G is even,

(iv) XiXi+3 =

{
Xi +Xi+1 +Xi+2 +Xi+3 +Xi+4 +Xi+5 if G is odd
Xi +Xi+3 if G is even,

(v) XiXi+4 =

{
Xi+1 +Xi+2 +Xi+3 +Xi+5 if G is odd
0 if G is even,

(vi) XiXi+5 =

{
Xi+1 +Xi+2 +Xi+3 +Xi+4 if G is odd
0 if G is even.

Proof. It follows immediately using Lemma 3.17 and Theorem 3.18. �

4. Exponential sums

4.1. Recall that Rpn = F4[x]/〈xpn − 1〉. Suppose that for 0 ≤ j ≤ n − 1,
0 ≤ k ≤ e− 1, an element Xjk(x) of Rpn is given by Xjk(x) =

∑
l∈Ω

pjgk
xl.

For n = 1, set X0k(x) = Xk(x) where 0 ≤ k ≤ e− 1.
Let α denote a primitive pnth root of unity and δ denote a primitive pth

root of unity in some extension field of F4.
Further, we write Xij(x) = Xij , Xi(x) = Xi and Yi = Xi(δ).

Theorem 4.2. Assume e = 2. Then δ can be suitably chosen such that (i)
Y0 = β, Y1 = β2, when p = 8k + 3 and (ii) Y0 = β, Y1 = β2, when p = 8k − 3.

Proof. (i) By Theorem 3.10(i), for 0 ≤ i ≤ 1, Y 2
i = Yi+1 and Y0Y1 = 1.

Therefore, we can choose δ such that Y0 = β and Y1 = β2.
(ii) By Theorem 3.10(ii), for 0 ≤ i ≤ 1, Y 2

i = Yi+1 and Y0Y1 = Y0 + Y1.
Therefore, we can choose δ such that Y0 = β and Y1 = β2. �
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Theorem 4.3. Assume e = 4 and p = 8k + 1. Then δ can be suitably chosen
such that (i) Y0 = β, Y1 = 0, Y2 = β2, Y3 = 0, when k is odd and (ii) Y0 = 1,
Y1 = β, Y2 = 1, Y3 = β2, when k is even.

Proof. (i) By Theorem 3.13, Y 2
0 = Y2, Y0Y2 = Y0 + Y2, so that Y 3

0 = Y0 + Y 2
0 .

This implies Y0(1 + Y0 + Y 2
0 ) = 0. Then Y0 = 0 or 1 + Y0 + Y 2

0 = 0. Taking
1 + Y0 + Y 2

0 = 0 we have Y0 = β and Y2 = Y 2
0 = β2 (Here Y0 = 0 can also be

considered, for explanation see Remark 4.6). Again by Theorem 3.13, Y1Y2 = 0.
Since Y2 = β2 6= 0, so we have Y1 = 0 and Y3 = Y 2

1 = 0.
(ii) By Theorem 3.13, Y 2

i = Yi+2, Y0Y1 = Y2 + Y3, Y0Y3 = Y1 + Y2. Adding
last two equations we get Y0Y1 + Y0Y3 = Y1 + Y3, which implies that (Y0 −
1)(Y1 + Y3) = 0. Then Y0 = 1 or Y1 = Y3. Taking Y0 = 1 we get Y2 = Y 2

0 = 1.
Now again by Theorem 3.13, Y0Y2 = Y0 + Y1 + Y2 + Y3 = 1, we get that
Y1 +Y 2

1 + 1 = 0 and which implies Y1 = β or β2. Now δ can be suitably chosen
so that Y1 = β. Then Y3 = Y 2

1 = β2, proving the result. �

Theorem 4.4. Assume p = 8k + 3 and e = 6. Then (i) Y0 = 0 = Y3,
Y1 = 1 = Y4, Y2 = β, Y5 = β2, when G is even and (ii) Y0 = 1 = Y3,
Y1 = 0 = Y4, Y2 = β, Y5 = β2, when G is odd.

Proof. (i) By Theorem 3.16, Y 2
i = Yi+3. Putting this in the identity 1 + Y0 +

Y1 + Y2 + Y3 + Y4 + Y5 = 0, we get

Y0 + Y 2
0 + Y1 + Y 2

1 + Y2 + Y 2
2 = 1.(1)

Again by Theorem 3.16, Y 3
i = YiYi+3 = 1 + Yi+2 + Yi+5 = 1 + Yi+2 + Y 2

i+2. In

view of this equation, (1) reduces to Y 3
0 +Y 3

1 +Y 3
2 = 0. The possible solutions

of this equation are (a) Y0 = Y1 = Y2 = 0, (b) Y 3
0 = 0, Y 3

1 = Y 3
2 = 1, (c)

Y 3
1 = 0, Y 3

0 = Y 3
2 = 1 and (d) Y 3

2 = 0, Y 3
0 = Y 3

1 = 1.
The set of values in (a) leads to a contradiction due to identity (3). So (a)

is ruled out.
Due to symmetry among three other solutions we choose solution (b) for

definiteness (see Remark 4.6 for more explanation). We can suitably choose δ
such that (b) holds and then by Theorem 3.16, 0 = Y 3

0 = Y0Y3 = 1 + Y2 + Y5.
This implies that Y2 = β and Y5 = β2. Again using Theorem 3.16, 1 = Y 3

2 =
Y2Y5 = 1 + Y1 + Y4 implying that Y1 = Y4 = 1. The case Y1 = Y4 = 0
is not possible, because Y 3

1 = 1. Finally, Y 3
0 = 0 implies that Y0 = 0 and

Y3 = Y 2
0 = 0.

(ii) Working on similar lines as in (i) above, we get that

(2) Y0 + Y 2
0 + Y1 + Y 2

1 + Y2 + Y 2
2 = 1.

Now by Theorem 3.16, Y 2
3 = Y0 and YiYi+3 = Y 3

i = 1 + Yi+1 + Y 2
i+1. In view

of above equation (2) reduces to Y 3
1 + Y 3

2 + Y 3
3 = 0. Now as discussed in (i)

and by repeated applications of Theorem 3.16, we get (ii). �
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Theorem 4.5. Assume p = 8k − 3 and e = 6. Then (i) Y0 = β, Y3 = β2,
Y1 = 1 = Y4, Y2 = 1 = Y5, when G is odd and (ii) Y0 = β, Y3 = β2,
Y1 = 0 = Y4, Y2 = 0 = Y5, when G is even.

Proof. (i) By Theorem 3.19, Y 2
i = Yi+3 and YiYi+3 = Yi+Yi+1 +Yi+2 +Yi+3 +

Yi+4 + Yi+5. Now using Y0Y3 = Y 3
0 = Y0 + Y1 + Y2 + Y3 + Y4 + Y5 and the

fact that 1 + Y0 + Y1 + Y2 + Y3 + Y4 + Y5 = 0, we get Y 3
0 = 1. Similarly,

Y 3
1 = Y 3

2 = Y 3
3 = Y 3

4 = Y 3
5 = 1. Since, Y 2

i = Yi+3, so we can take Y0 = β,
Y3 = β2, Y1 = β, Y4 = β2, Y2 = β and Y5 = β2. This leads to a contradiction
because YiYi+1 = Yi+2 + Yi+3 + Yi+4 + Yi+5. Similarly, another set of values
Y0 = 1 = Y3, Y1 = β, Y4 = β2, Y2 = β, Y5 = β2, also leads to a contradiction.
Thus we must have the solution as described in (i) (for explanation see Remark
4.6 also).

(ii) By Theorem 3.19, Y 2
i = Yi+3 which implies Y 3

i = YiYi+3 = Yi + Yi+3.
Now using the identity 1 + Y0 + Y1 + Y2 + Y3 + Y4 + Y5 = 0, we have 1 + Y 3

0 +
Y 3

1 + Y 3
2 = 0. One of the solution of this equation is Y 3

0 = Y 3
1 = Y 3

2 = 1.
Again by Theorem 3.19, YiYj = 0 when j 6= i, i + 3. So Y 3

0 = Y 3
1 = Y 3

2 = 1 is
not possible. Therefore, we may choose δ such that Y 3

0 = 1 and Y 3
1 = 0 = Y 3

2 .
Now Y0Y3 = Y0 + Y3 implies that Y0 = β, Y3 = β2. Trivially, Y1 = 0 = Y4 and
Y2 = 0 = Y5. �

Remark 4.6. While proving Theorem 4.3(i) if we take Y0 = 0, then Y2 = Y 2
0 =

0. Therefore, 1 +Y0 +Y1 +Y2 +Y3 = 0 implies that Y1 = β and Y3 = β2. If we
consider this solution, then this will permute the idempotents corresponding
to various cyclotomic cosets obtained in Theorem 5.4. Similarly in Theorem
4.3(ii), if instead of taking Y0 = 1 we take Y1 = Y3. Then Y1 = Y3 = 1, Y0 = β
and Y2 = β2. While proving Theorem 4.4(i) if we consider solution by taking
case (c) or (d), then again this will permute the idempotents corresponding
to various cyclotomic cosets obtained in Theorem 5.5. Similarly, in Theorem
4.5(i) we can also take Y0 = Y3 = Y2 = Y5 = 1, Y1 = β and Y4 = β2 or
Y0 = Y3 = Y1 = Y4 = 1, Y2 = β and Y5 = β2 etc. as the solution.

Lemma 4.7. Let i ∈ Ωplgm , where 0 ≤ l ≤ n − 1 and 0 ≤ m ≤ e − 1.

Then for any 0 ≤ j ≤ n − 1, 0 ≤ k ≤ e − 1 and f even
∑
r∈Ω

pjgk
α−ir = 0 if j + l < n− 1

pn−j−1Xn−1,k+m(α) if j + l = n− 1
|Ωpjgk | if j + l ≥ n.

Proof. If i ∈ Ωplgm , then by Theorem 2.6, i = plgm(4t1 + λ1p) for some

0 ≤ t1 ≤ f − 1 and 0 ≤ λ1 ≤ pn−l−1 − 1. Therefore,
∑
r∈Ω

pjgk
α−ir =∑

r α
−plgm(4t1+λ1p)r. Now f being even, so by Lemma 2.5, −1 ∈ Ωp0g0 and

therefore, ∑
r∈Ω

pjgk

α−ir =
∑
r

αp
lgm(4t1+λ1p)r
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=

f−1∑
t=0

pn−j−1−1∑
λ=0

αp
lgm(4t1+λ1p)αp

jgk(4t+λp)

=

f−1∑
t=0

pn−j−1−1∑
λ=0

αp
l+jgk+m(4t1+λ1p)(4

t+λp).(3)

(i) Let l + j < n− 1. Then αp
l+jgk+m(4t1+λ1p) = γ is a primitive pn−(l+j)th

root of unity. Then (3) becomes∑
r∈Ω

pjgk

α−ir =
∑
t

∑
λ

γ(4t+λp)

=
∑
t

γ4t ∑
λ

γλp

=
∑
t

γ4t

(1 + γp + · · ·+ γ(pn−j−1−1)p)

=
(γp)p

n−j−1 − 1

γp − 1

∑
t

γ4t

.

Since j + l < n − 1 and γ is a primitive pn−(l+j) th root of unity, γp 6= 1 and

(γp)p
n−j−1

= 1. Therefore,
∑
t

∑
λ γ

(4t+λp) = 0, proving (i).

(ii) Let j + l = n − 1. Then αp
(l+j)(4t1+λ1p) = γ is a primitive pth root of

unity. Substituting this in (3) we get∑
r∈Ω

pjgk

α−ir =
∑
t

∑
λ

γg
k+m(4t+λp)

=
∑
t

γg
k+m4t ∑

λ

(γp)λg
k+m

=
∑
t

γg
k+m4t

(pn−j−1)

= pn−j−1Xn−1,k+m(α).

(iii) j + l ≥ n. Again let γ = αp
l+jgk+m(4t1+λ1p). Then γ = 1 and therefore,∑

r∈Ω
pjgk

α−ir = |Ωpjgk |. �

Lemma 4.8. Let i ∈ Ωplgm , where 0 ≤ l ≤ n − 1 and 0 ≤ m ≤ e − 1. Then

for any 0 ≤ j ≤ n − 1, 0 ≤ k ≤ e − 1 and f odd we have
∑
r∈Ω

pjgk
α−ir = 0 if j + l < n− 1

pn−j−1Xn−1,k+m+e/2(α) if j + l = n− 1
|Ωpjg(k+e/2) | if j + l ≥ n.

Proof. Since f is odd, by Lemma 2.5, −1 ∈ Ω
p0g

e
2

, therefore,
∑
r∈Ω

pjgk
α−ir =∑

r∈Ω
pjg

(k+ e
2
)
αir. The proof now follows on similar lines as in Lemma 4.7. �
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5. Expressions of idempotents

In this section we provide explicit expressions for primitive idempotents in
Rpn over F4 in all the cases, i.e., when e = 2, 4 or 6 corresponding to 4-
cyclotomic cosets Ωpjqk obtained in Theorem 2.4. For this we recall some
definitions and some well known facts without proof.

It is well known that a q-cyclotomic coset Ωs modulo n corresponds to a
minimal polynomial, say, Ms(x). Then, the cyclic code of length n, say, Es
over Fq is the minimal cyclic code with generator polynomial gs(x) = xn−1

Ms(x)

and the number of these minimal cyclic codes is equal to the number of q-
cyclotomic cosets modulo n. Further, observe that every minimal cyclic code
with generator polynomial gs(x) such that Ms(x) 6= (x−1) is even like and the

code with generator polynomial g0(x) = xn−1
(x−1) is odd like.

Lemma 5.1 ([19,25]). If α is a primitive (pn) th root of unity in some extension
field of Fq, then the primitive idempotent corresponding to a q-cyclotomic coset

Ωs is given by θs(x) =
∑pn−1
i=0 ε

(s)
i xi, where εsi = 1

pn

∑
j∈Ωs

α−ij.

Also note that θs(α
i) =

{
1, i ∈ Ωs
0 otherwise.

Therefore, the defining set of the code generated by θs is {0, 1, 2, . . . , pn −
1} − Ωs and due to the above discussion, Es = 〈θs(x)〉 = 〈gs(x)〉. Hence the
number of primitive idempotents θs are equal to the number of cyclotomic
cosets Ωs.

For 0 ≤ j ≤ n−1 and 0 ≤ k ≤ e−1, let θjk denote the primitive idempotent
corresponding to Ωpjgk and θ0 denote the primitive idempotent corresponding
to Ω0. Further, let Et denote the minimal cyclic code generated by the primitive
idempotent θt and Ēt denote the cyclic code generated by the idempotent 1+θt.

Theorem 5.2. (i) If f is even, then for 0 ≤ j ≤ n− 1 and 0 ≤ k ≤ e− 1 the
en+ 1 primitive idempotents in Rpn are given by θ0 = 1 + x+ x2 + · · ·+ xp

n−1

and θjk =
∑e−1
i=0 X(n−j−1)iY(i+k).

(ii) If f is odd, then for 0 ≤ j ≤ n − 1 and 0 ≤ k ≤ e − 1 the en + 1
primitive idempotents in Rpn are given by θ0 = 1 + x + x2 + · · · + xp

n−1 and

θjk = 1 +
∑e−1
l=0

∑j
k=1X(n−k)l +

∑e−1
i=0 X(n−j−1)iY(i+k+e/2).

Proof. It can be easily proved that θ0 in (i) and (ii) above is a primitive idem-
potent corresponding to Ω0.

(i) By Lemma 5.1 and Theorem 2.4,

θjk = εp
jgk

0 + εp
jgk

p0g0

∑
i∈Ωp0g0

xi + · · ·+ εp
jgk

p0ge−1

∑
i∈Ωp0ge−1

xi + εp
jgk

p1g0

∑
i∈Ωp1g0

xi

+ · · ·+ εp
jgk

p1ge−1

∑
i∈Ωp1ge−1

xi + · · ·+ εp
jgk

pn−1g0

∑
i∈Ωpn−1g0

xi
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+ · · ·+ εp
jgk

pn−1ge−1

∑
i∈Ωpn−1ge−1

xi.(4)

We now evaluate εp
jgk

r , where r ∈ {0, p0g0, . . . , p0ge−1, . . . , pn−1g0, . . . ,
pn−1ge−1} by using definition of εsi given in Lemma 5.1.

For εp
jgk

0 = 1
pn

∑
t∈Ω

pjgk
α−0t = |Ωpjgk | and by Lemma 4.7,

εp
jgk

plgm
=

 0 if j + l < n− 1
pn−j−1Xn−1,k+m(α) if j + l = n− 1

|Ωpjgk | if j + l ≥ n.

Since f is even, |Ωpjgk | = pn−j−1f = 0. Further, in view of Theorem 2.6,
X(n−1)(k+m)(α) = X0(k+m)(δ) = Yk+m. Using these facts and various εsi ’s, (4)

reduces to θjk =
∑e−1
i=0 X(n−j−1)iY(i+k).

Similarly, we can obtain (ii). �

In Theorems 5.3-5.6 we give the explicit expressions for primitive idempo-
tents in all the specific cases when e = 2, 4 or 6. These expressions can be easily
obtained from the general expressions given in Theorem 5.2 by using Theorems
4.2-4.5. Since the odd like primitive idempotent θ0, an all one vector of length
pn remains same in all cases, therefore only expressions of even like primitive
idempotents θjk will be listed.

Theorem 5.3. Assume e = 2 and 0 ≤ j ≤ n− 1. Then
(i) If p = 8k+ 3, then the expressions of 2n primitive idempotents are given

by

θj0 = 1 +X(n−j)0 +X(n−j)1 + · · ·+X(n−1)0 +X(n−1)1

+ β2X(n−j−1)0 + βX(n−j−1)1,

θj1 = 1 +X(n−j)0 +X(n−j)1 + · · ·+X(n−1)0 +X(n−1)1

+ βX(n−j−1)0 + β2X(n−j−1)1.

(ii) If p = 8k − 3, then the expressions for primitive idempotents are given
by

θj0 = βX(n−j−1)0 + β2X(n−j−1)1,

θj1 = β2X(n−j−1)0 + βX(n−j−1)1.

Remark. The expressions for idempotents in the above theorem have also been
obtained in [2, 6]. In particular for n = 1, E00 and E01 are expurgated QR
codes and Ē00 and Ē01 are augmented QR codes over F4 (see [19] for detail).

Theorem 5.4. Assume p = 8k + 1, e = 4 and 0 ≤ j ≤ n− 1. Then
(i) If k is odd, then the expressions of 4n primitive idempotents are given by

θj0 = βX(n−j−1)0 + β2X(n−j−1)2,

θj1 = β2X(n−j−1)1 + βX(n−j−1)3,
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θj2 = β2X(n−j−1)0 + βX(n−j−1)2,

θj3 = βX(n−j−1)1 + β2X(n−j−1)3.

(ii) If k is even, then the expressions of 4n primitive idempotents are given
by

θj0 = X(n−j−1)0 + βX(n−j−1)1 +X(n−j−1)2 + β2X(n−j−1)3,

θj1 = βX(n−j−1)0 +X(n−j−1)1 + β2X(n−j−1)2 +X(n−j−1)3,

θj2 = X(n−j−1)0 + β2X(n−j−1)1 +X(n−j−1)2 + βX(n−j−1)3,

θj3 = β2X(n−j−1)0 +X(n−j−1)1 + βX(n−j−1)2 +X(n−j−1)3.

Theorem 5.5. Assume p = 8k + 3, e = 6 and 0 ≤ j ≤ n− 1. Then
(i) If G is even, then the expressions of 6n primitive idempotents are given

by

θj0 = 1 +X(n−j)0 +X(n−j)1 + · · ·+X(n−j)5 +X(n−j+1)0 + · · ·+X(n−1)5

+X(n−j−1)1 + β2X(n−j−1)2 +X(n−j−1)4 + βX(n−j−1)5,

θj1 = 1 +X(n−j)0 +X(n−j)1 + · · ·+X(n−j)5 +X(n−j+1)0 + · · ·+X(n−1)5

+X(n−j−1)0 + β2X(n−j−1)1 +X(n−j−1)3 + βX(n−j−1)4,

θj2 = 1 +X(n−j)0 +X(n−j)1 + · · ·+X(n−j)5 +X(n−j+1)0 + · · ·+X(n−1)5

+ β2X(n−j−1)0 +X(n−j−1)2 + βX(n−j−1)3 +X(n−j−1)5,

θj3 = 1 +X(n−j)0 +X(n−j)1 + · · ·+X(n−j)5 +X(n−j+1)0 + · · ·+X(n−1)5

+X(n−j−1)1 + βX(n−j−1)2 +X(n−j−1)4 + β2X(n−j−1)5,

θj4 = 1 +X(n−j)0 +X(n−j)1 + · · ·+X(n−j)5 +X(n−j+1)0 + · · ·+X(n−1)5

+X(n−j−1)0 + βX(n−j−1)1 +X(n−j−1)3 + β2X(n−j−1)4,

θj5 = 1 +X(n−j)0 +X(n−j)1 + · · ·+X(n−j)5 +X(n−j+1)0 + · · ·+X(n−1)5+

βX(n−j−1)0 +X(n−j−1)2 + β2X(n−j−1)3 +X(n−j−1)5.

(ii) If G is odd, then the expressions of 6n primitive idempotents are given
by

θj0 = 1 +X(n−j)0 +X(n−j)1 + · · ·+X(n−j)5 +X(n−j+1)0 + · · ·+X(n−1)5

+X(n−j−1)0 + β2X(n−j−1)2 +X(n−j−1)3 + βX(n−j−1)5,

θj1 = 1 +X(n−j)0 +X(n−j)1 + · · ·+X(n−j)5 +X(n−j+1)0 + · · ·+X(n−1)5

+ β2X(n−j−1)1 +X(n−j−1)2 + βX(n−j−1)4 +X(n−j−1)5,

θj2 = 1 +X(n−j)0 +X(n−j)1 + · · ·+X(n−j)5 +X(n−j+1)0 + · · ·+X(n−1)5

+ β2X(n−j−1)0 +X(n−j−1)1 + βX(n−j−1)3 +X(n−j−1)4,

θj3 = 1 +X(n−j)0 +X(n−j)1 + · · ·+X(n−j)5 +X(n−j+1)0 + · · ·+X(n−1)5

+X(n−j−1)0 + βX(n−j−1)2 +X(n−j−1)3 + β2X(n−j−1)5,
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θj4 = 1 +X(n−j)0 +X(n−j)1 + · · ·+X(n−j)5 +X(n−j+1)0 + · · ·+X(n−1)5

+ βX(n−j−1)1 +X(n−j−1)2 + β2X(n−j−1)4 +X(n−j−1)5,

θj5 = 1 +X(n−j)0 +X(n−j)1 + · · ·+X(n−j)5 +X(n−j+1)0 + · · ·+X(n−1)5

+ βX(n−j−1)0 +X(n−j−1)1 + β2X(n−j−1)3 +X(n−j−1)4.

Theorem 5.6. Assume p = 8k − 3, e = 6 and 0 ≤ j ≤ n− 1. Then
(i) If G is odd, then the expressions of 6n primitive idempotents are given

by

θj0 = βX(n−j−1)0 +X(n−j−1)1 +X(n−j−1)2 + β2X(n−j−1)3

+X(n−j−1)4 +X(n−j−1)5,

θj1 = X(n−j−1)0 +X(n−j−1)1 + β2X(n−j−1)2 +X(n−j−1)3

+X(n−j−1)4 + βX(n−j−1)5,

θj2 = X(n−j−1)0 + β2X(n−j−1)1 +X(n−j−1)2 +X(n−j−1)3

+ βX(n−j−1)4 +X(n−j−1)5,

θj3 = β2X(n−j−1)0 +X(n−j−1)1 +X(n−j−1)2 + βX(n−j−1)3

+X(n−j−1)4 +X(n−j−1)5,

θj4 = X(n−j−1)0 +X(n−j−1)1 + βX(n−j−1)2 +X(n−j−1)3

+X(n−j−1)4 + β2X(n−j−1)5,

θj5 = X(n−j−1)0 + βX(n−j−1)1 +X(n−j−1)2 +X(n−j−1)3

+ β2X(n−j−1)4 +X(n−j−1)5.

(ii) If G is even, then the expressions of 6n primitive idempotents are given
by

θj0 = βX(n−j−1)0 + β2X(n−j−1)3,

θj1 = β2X(n−j−1)2 + βX(n−j−1)5,

θj2 = β2X(n−j−1)1 + βX(n−j−1)4,

θj3 = β2X(n−j−1)0 + βX(n−j−1)3,

θj4 = βX(n−j−1)2 + β2X(n−j−1)5,

θj5 = βX(n−j−1)1 + β2X(n−j−1)4.

Next we present two examples illustrating the results obtained in previous
sections. First we state a result related to the minimum distance of a cyclic
code.

Theorem 5.7 ([20, p. 115]). If C is a cyclic code of length m over Fq whose
generator polynomial g(x) has roots β, β2, . . . , βδ−1 in some extension field of
Fq, then the minimum distance of C is ≥ δ, where β is a primitive mth root of
unity.
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Example 5.8. Let p = 17. Observe that f = 17−1
4 = 4 and e = 4. g = 7

is a primitive root modulo 17. Then using Theorem 2.4 and Notation in 3.1,
the 4-cyclotomic cosets modulo 17 are Ω0 = {0}, Ω70 = {1, 4, 16, 13}, Ω71 =
{10, 6, 7, 11}, Ω72 = {9, 2, 8, 15} and Ω73 = {3, 12, 14, 5}. Since p = 8k+1 = 17,
so k = 2 and therefore, by Theorem 5.4(ii), the five primitive idempotents of
E0, E00, E01, E02 and E03 are given by

θ0(x) = 1 + x+ x2 + · · ·+ x16,

θ00(x) = (x+ x4 + x16 + x13) + β(x6 + x7 + x10 + x11),

+ (x2 + x8 + x9 + x15) + β2(x3 + x5 + x12 + x14),

θ01(x) = β(x+ x4 + x16 + x13) + (x6 + x7 + x10 + x11)

+ β2(x2 + x8 + x9 + x15) + (x3 + x5 + x12 + x14),

θ02(x) = (x+ x4 + x16 + x13) + β2(x6 + x7 + x10 + x11)

+ (x2 + x8 + x9 + x15) + β(x3 + x5 + x12 + x14),

θ03(x) = β2(x+ x4 + x16 + x13) + (x6 + x7 + x10 + x11)

+ (x2 + x8 + x9 + x15) + β(x3 + x5 + x12 + x14).

Let for 0 ≤ i ≤ 3, M0i(x) denote the minimal polynomial corresponding to the
cyclotomic coset Ω7i and M0(x) denote the minimal polynomial corresponding
to the cyclotomic coset Ω0. We obtain these polynomials by repeated applica-
tions of Theorem 4.3(ii) and are given by

M0(x) = x− 1,

M00(x) = x4 + x3 + x4 + βx2 + x+ 1,

M01(x) = x4 + βx3 + x2 + βx+ 1,

M02(x) = x4 + x3 + β2x2 + x+ 1,

M03(x) = x4 + β2x3 + x2 + β2x+ 1.

Therefore the generator polynomials g0(x) and g0i(x) of E0 and E0i, where
0 ≤ i ≤ 3, are respectively given as follows:

g0(x) = 1 + x+ x2 + · · ·+ x16,

g00(x) = x13 + x12 + β2x11 + x9 + β2x8 + βx7 + βx6 + β2x5

+ x4 + β2x2 + x+ 1,

g01(x) = x13 + βx12 + βx11 + β2x10 + x9 + βx7 + βx6 + x4

+ β2x3 + βx2 + βx+ 1,

g02(x) = x13 + x12 + βx11 + x9 + βx8 + β2x7 + β2x6 + βx5 + x4

+ βx2 + x+ 1,

g03(x) = x13 + β2x12 + β2x11 + βx10 + x9 + β2x7 + β2x6 + x4
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+ βx3 + β2x2 + β2x+ 1.

Using g00(x) we did an exhaustive search for finding the weights of all codewords
in E00 and we find that E00 is a two weight code with two non-zero weights
12 and 16. The weight distribution of this code is given by 1 + 204z12 + 51z16.
Further, since E00, E01, E02 and E03 are equivalent codes, so each of these
codes has the weight distribution as above.

Example 5.9. Let p = 43. Observe that f = 43−1
6 = 7 and e = 6. g = 5 is a

primitive root modulo 43. Then the 4-cyclotomic cosets modulo 43 are

Ω50 = {1, 4, 16, 21, 41, 35, 11},
Ω51 = {5, 20, 37, 19, 33, 3, 12},
Ω52 = {25, 14, 13, 9, 36, 15, 17},
Ω53 = {39, 27, 22, 2, 8, 32, 42},
Ω54 = {23, 6, 24, 10, 40, 31, 38},
Ω55 = {29, 30, 34, 7, 28, 26, 18}.

Since p = 8k + 3, in order to apply Theorem 5.5, we have to obtain the parity
of the cyclotomic number G defined in the cyclotomic matrix given in Lemma
3.14. For this observe that 1 + Ωg = {6, 21, 38, 20, 34, 4, 13} contains exactly 2
elements of Ωg0 . Therefore, G = 2, which is even. Thus by Theorem 5.5(i), the
primitive idempotents of E0, E00, E01, E02, E03, E04 and E05 are given by

θ0 = 1 + x+ x2 + · · ·+ x42,

θ00 = 1 +X1 + β2X2 +X4 + βX5,

θ01 = 1 +X0 + β2X1 +X3 + βX4,

θ02 = 1 + β2X0 +X2 + βX3 +X5,

θ03 = 1 +X1 + βX2 +X4 + β2X5,

θ04 = 1 +X0 + βX1 +X3 + β2X4,

θ05 = 1 + βX0 +X2 + β2X3 +X5.

Let for 0 ≤ i ≤ 5, M0i(x) denote the minimal polynomial corresponding to the
cyclotomic coset Ω5i and M0(x) denote the minimal polynomial corresponding
to the cyclotomic coset Ω0. By repeated applications of Theorem 4.4(i), we
obtain these polynomials and are given by

M0(x) = x− 1,

M00(x) = x7 + β2x5 + x4 + x3 + βx2 + 1,

M01(x) = x7 + x6 + β2x5 + βx2 + x+ 1,

M02(x) = x7 + βx6 + βx5 + βx4 + β2x3 + β2x2 + β2x+ 1,

M03(x) = x7 + βx5 + x4 + x3 + β2x2 + 1,
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M04(x) = x7 + x6 + βx5 + β2x2 + x+ 1,

M05(x) = x7 + β2x6 + β2x5 + β2x4 + βx3 + βx2 + βx+ 1.

Therefore the generator polynomials g0(x) and g0i(x) of E0 and E0i, where
0 ≤ i ≤ 5, are respectively given as follows:

g0(x) = 1 + x+ x2 + · · ·+ x42,

g00(x) = x36 + β2x34 + x33 + β2x32 + βx31 + β2x29 + β2x28 + βx27

+ β2x26 + βx25 + x23 + x22 + β2x21 + βx20 + x19 + x17

+ βx16 + βx15 + x14 + x13 + β2x11 + βx10 + β2x9 + βx8

+ βx7 + β2x5 + βx4 + x3 + βx2 + 1,

g01(x) = x36 + x35 + βx34 + x33 + x31 + βx30 + βx29 + βx28 + βx26

+ x24 + βx23 + x22 + x21 + β2x19 + x18 + βx17 + x15 + x14

+ β2x13 + x12 + β2x10 + β2x8 + β2x7 + β2x6 + x5 + x3

+ β2x2 + x+ 1,

g02(x) = x36 + βx35 + x34 + β2x33 + β2x32 + x30 + βx29 + x26 + β2x25

+ x24 + x23 + x21 + βx20 + βx19 + x18 + β2x17 + β2x16 + x15

+ x13 + x12 + βx11 + x10 + β2x7 + x6 + βx4 + βx3 + x2 + β2x+ 1,

g03(x) = x36 + βx34 + x33 + βx32 + β2x31 + βx29 + βx28 + β2x27 + βx26

+ β2x25 + x23 + x22 + βx21 + β2x20 + x19 + x17 + β2x16 + β2x15

+ x14 + x13 + βx11 + β2x10 + βx9 + β2x8 + β2x7 + βx5 + β2x4

+ x3 + β2x2 + 1,

g04(x) = x36 + x35 + β2x34 + x33 + x31 + β2x30 + β2x29 + β2x28 + β2x26

+ x24 + β2x23 + x22 + x21 + βx19 + x18 + β2x17 + x15 + x14

+ βx13 + x12 + βx10 + βx8 + βx7 + βx6 + x5 + x3 + βx2 + x+ 1,

g05(x) = x36 + β2x35 + x34 + βx33 + βx32 + x30 + β2x29 + x26 + βx25

+ x24 + x23 + x21 + β2x20 + β2x19 + x18 + βx17 + βx16

+ x15 + x13 + x12 + β2x11 + x10 + βx7 + x6 + β2x4 + β2x3

+ x2 + βx+ 1.

It can be readily observed that α22, α23, . . . , α34 are among the roots of gener-
ator polynomial of E00. Therefore, using Theorem 5.7, its minimum distance
d ≥ 14. Further, one can observe that the largest set of consecutive powers of α
which are among the roots of a generator polynomial of any minimal cyclic code
E00, E01, E02, E03 or E04 contains not more than 13 elements and these codes
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are equivalent codes. Therefore, the lower bound for the minimum distance of
each code E0i, where 0 ≤ i ≤ 5 is 14.

6. Orthogonal properties of codes Ejm and cyclotomic Q codes

6.1. (i) Q codes (see [21] for detail). Let p be an odd prime. Then a pair of sets
D0 and D1 each of which is a union of non-zero 4-cyclotomic cosets, forms a
splitting of pn determined by µ if µD0 = D1, µD1 = D0, D0∩D1 = φ and D0∪
D1 = {1, 2, . . . , pn − 1}, where µ is an invertible element of {0, 1, 2, . . . , p− 1}.
Then a pair of cyclic codes of length pn, C1 = 〈e1〉 and C2 = 〈e2〉 generated by
idempotents e1 and e2, is said to be a pair of Q codes if e1 = a+ β

∑
i∈D0

xi +

β2
∑
i∈D1

xi and e2 = a+ β2
∑
i∈D0

xi + β
∑
i∈D1

xi, where a is 0 or 1.

(ii) If n = 1 and D0 and D1 in (i) are the sets of quadratic residues and non
residues modulo p respectively, then C1 and C2 above are called quaternary QR
codes (see [21]).

Using the definition of binary cyclotomic duadic codes [12] we can naturally
define cyclotomic Q codes as follows.

(iii) Cyclotomic Q codes. Let n = 1. If each set of the pair D0, D1 in (i) is
a union of cyclotomic classes of order e (cf. Definition 3.2). Then the pair Q
codes of length p, C1 = 〈e1〉 and C2 = 〈e2〉 defined in (i) is said to be a pair of
cyclotomic Q codes of order e.

Before proving some results related to cyclotomic Q codes we first analyze
some orthogonal properties of the codes E0i of length p, where 0 ≤ i ≤ e − 1
in our next Theorem 6.4. For this we recall the following definitions of inner
products and a result in [21].

Definition 6.2. Let V be a vector space of all n-tuples over F4 and C be a code
of length n over F4. For a ∈ F4, we take ã = a2. Let x = {a0, a1, . . . , an−1},
y = {b0, b1, . . . , bn−1} ∈ V . We now define two inner products denoted by ·
and ? as follows: x · y =

∑n−1
i=0 aib̃i and x ? y =

∑n−1
i=0 aibi. We say that x is

orthogonal to y if x ·y = 0 and x is strictly orthogonal to y if x?y = 0. Further
we denote C⊥(C⊥?) the orthogonal of C with respect to ·(?).

Theorem 6.3 ([20,21]). If C is a cyclic code of length n over F4 with idempo-
tent generator e, then C⊥ has idempotent generator 1 + µ−2(e) and C⊥? has
idempotent generator 1 + µ−1(e), where µa is the coordinate permutation de-
fined as µa : i → ai (mod n) for i ∈ {0, 1, . . . , (n − 1)}, where a is an integer
such that (a, n) = 1.

Recall that for 0 ≤ j ≤ n − 1 and 0 ≤ k ≤ e − 1, let Ejk denote the code
generated by θjk and Ējk denote the code generated by 1 + θjk.

Theorem 6.4. Let 0 ≤ k ≤ e
2 − 1 be fixed (e = 2, 4 or 6). Then for any

0 ≤ j ≤ n− 1, Ejk and Ej(k+e/2) are subcodes of some Q codes satisfying

(I) If p = 8k + 3, then E⊥jk = Ējk, E⊥j(k+e/2) = Ēj(k+e/2), E
⊥?
jk = Ēj(k+e/2)

and E⊥?0(i+e/2) = Ē0i.
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(II) If p = 8k − 3 or 8k + 1, then E⊥jk = Ēj(k+e/2), E
⊥
j(k+e/2) = Ējk,

E⊥?jk = Ējk and E⊥?j(k+e/2) = Ēj(k+e/2).

Proof. First we prove that for 0 ≤ k ≤ e
2 − 1 and 0 ≤ j ≤ n − 1, Ejk and

Ej(k+e/2) are subcodes of some Q codes. For this, let e = 2. Then p =

8k ± 3. Let S1 = ∪n−1
j=0 Ωpjg0 and S2 = ∪n−1

j=0 Ωpjg1 . Here we see that S1 ∪ S2 =

{1, 2, . . . , pn−1} and S1∩S2 = φ. Further, gS1 = S2 and gS2 = S1. Therefore,
(S1, S2) is a splitting modulo pn. Now in view of Theorem 5.3(i),

n−1∑
j=0

θj0 = n+

n−1∑
j=1

(n− j)(X(n−j)0 +X(n−j)1)

+ β2
n∑
j=1

X(n−j)0 + β

n∑
j=1

X(n−j)1

and

n−1∑
j=0

θj1 = n+

n−1∑
j=1

(n− j)(X(n−j)0 +X(n−j)1)

+ β

n∑
j=1

X(n−j)0 + β2
n∑
j=1

X(n−j)1

and in view of Theorem 5.3(ii) we have,

n−1∑
j=0

θj0 = β

n∑
j=1

X(n−j)0 + β2
n∑
j=1

X(n−j)1

and

n−1∑
j=0

θj1 = β2
n∑
j=1

X(n−j)0 + β

n∑
j=1

X(n−j)1.

Now observe that in both the cases, µg(θj0) = θj1 and µg(θj1) = θj0. Hence

〈
∑n−1
j=0 θj0〉 and 〈

∑n−1
j=0 θj1〉 are Q codes. Similarly, in view of Theorems 5.4-

5.6, we get that 〈
∑n−1
j=0 θj0〉 and 〈

∑n−1
j=0 θj1〉 are Q codes in various cases and

hence the result follows.
We now prove (I). For this, let p = 8k + 3 then f is odd and therefore by

Lemma 2.5, −1 ∈ Ωp0g
e/2 and −2 ∈ Ωp0g

0. Therefore, using the formulation of
cyclotomic cosets in Theorem 2.4, −Ωpjgk = Ωpjgk+e/2 and −2Ωpjgk = Ωpjgk ,
for any 0 ≤ k ≤ e

2 − 1 and 0 ≤ j ≤ n − 1. This implies that µ−1(Xjk) =
Xj(k+e/2) and µ−1(Xjk) = Xj(k+e/2) µ−2(Xjk) = Xjk. Hence the result follows
in view of Definition 6.2 and the expressions of idempotents in Theorems 5.3(i)
and 5.5. To prove (II), let p = 8k− 3 or 8k+ 1 then f is even and therefore by
Lemma 2.5, −2 ∈ Ωp0ge/2 and −1 ∈ Ωp0g0 . Hence the result follows on similar
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lines as in (I), in view of Definition 6.2 and the expressions of idempotents in
Theorems 5.3(ii), 5.4 and 5.6. �

Analogous to the fact that every binary duadic code of prime length is a
cyclotomic duadic code, we see in view of Definitions 6.1(i), (ii) and Lemma
3.3 that:

Theorem 6.5. Every Q code of prime length is cyclotomic.

Further, the following results related to cyclotomic Q codes of order 4 and
6 are analogous to Theorems 30 and 36 of [12].

Recall that Xi =
∑
i∈Ci

xi.

Theorem 6.6. Assume that p = 8k + 1 such that 4 is a biquadratic residue
modulo p and 2 is not a biquadratic residue modulo p. Then there are cyclotomic
Q codes of order 4 other than binary QR codes.

Proof. Since 4 is a biquadratic residue modulo p. Then there exists an integer a
such that a4 ≡ 4 (mod p). Let g be a primitive root modulo p. Then a = gb for

some integer b and so g4b ≡ 4 (mod p). This implies 1 ≡ gb(p−1) ≡ 4
p−1
4 (mod

p). Now Op(4) = f , so we have p−1
4 = ft for some integer t. Let D0 = (g4t).

Then D0 is a subgroup of C0 = (g4) with |D0| = f . It is easy to see that
C0 = D0 ∪ g4D0 ∪ · · · ∪ g4(t−1)D0. Since g4b ≡ 4 (mod p), g4bf ≡ 4f ≡ 1 (mod
p) and therefore, p − 1 divides 4bf , that is, t divides b. Thus 4 = g4b ∈ (g4t).
Now |D0| = f . Therefore, the cyclotomic coset {1, 4, 42, . . . , 4f−1} = D0 ⊆ C0.
Hence each cyclotomic class of order 4 is a union of 4-cyclotomic cosets modulo
p. Now using Definition 3.2 of cyclotomic classes of order 4, we have 3 splittings,
namely, (C0 ∪ C1, C2 ∪ C3), (C0 ∪ C3, C1 ∪ C2) and (C0 ∪ C2, C1 ∪ C3). The
first 2 splittings are determined by g2 while the third one is determined by
g. We now claim that (X0 + X2), (X1 + X3) ; β(X0 + X1) + β2(X2 + X3),
β2(X0+X1)+β(X2+X3) ; β(X0+X3)+β2(X1+X2), β2(X0+X3)+β(X1+X2)
are idempotents. Since 2 is a quadratic residue of a prime of the form 8k+1, so
we can take b2 ≡ 2 (mod p). Now let b = gl. Then g2l ≡ 2 (mod p). Since 2 is
not a biquadratic residue modulo p, l must be odd. Therefore 2 ∈ C2, proving
the claim. Further, observe that (C0 ∪C2), (C1 ∪C3) are the sets of quadratic
residues and non residues modulo p respectively. This shows that (X0 + X2)
and (X1 + X3) are binary QR codes of length p (see [21] for detail) and the
remaining two splittings give two pairs of Q codes of order 4. �

Theorem 6.7. Assume that p = 6f + 1 such that 4 is a sextic residue modulo
p and 2 ia quadratic non residue modulo p. Then there are cyclotomic Q codes
of order 6 that are not quaternary QR codes.

Proof. Since 2 is a quadratic non residue modulo p, p = 8k ± 3. Since 4 is
a sextic residue modulo p. Then there exists an integer a such that a6 ≡ 4
(mod p). Now working on similar lines as in Theorem 6.6, we can prove that
each cyclotomic class of order 6 is a union of 4-cyclotomic cosets modulo p.
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Using the definition of cyclotomic classes of order 6, we have the splittings
(C0∪C1∪C2, C3∪C4∪C5), (C3∪C1∪C2, C0∪C4∪C5), (C0∪C1∪C5, C3∪C4∪C2)
and (C0 ∪C2 ∪C4, C1 ∪C3 ∪C5). All these four splittings of p are determined
by g3. Further, it is easy to see that 2 ∈ C3, which in fact implies that
β(X0 +X1 +X2) + β2(X3 +X4 +X5), β2(X0 +X1 +X2) + β(X3 +X4 +X5);
β(X3 +X1 +X2) + β2(X0 +X4 +X5), β2(X3 +X1 +X2) + β(X0 +X4 +X5);
β(X0 +X1 +X5) + β2(X3 +X4 +X2), β2(X0 +X1 +X5) + β(X3 +X4 +X2);
β(X0 +X2 +X4)+β2(X1 +X3 +X5), β2(X0 +X2 +X4)+β(X1 +X3 +X5) are
idempotents. Finally, we can see that the first three splittings give three pairs
of cyclotomic Q codes of order 6 and the last splitting give a pair of quaternary
QR codes (see [21, p. 266] for detail). �

At the end of this section, we discuss about the infinite number of prime
lengths for which cyclotomic Q codes of order 6 exist. For this we need some
intermediate results.

Lemma 6.8. An integer a is a cubic residue modulo m if and only if −a is a
cubic residue modulo m.

Proof. Trivial. �

Lemma 6.9 ([12]). Let p ≡ 1 (mod 3) be a prime. Then 2 is a cubic residue
modulo p if and only if p is of the form p = x2 + 27y2, where x, y ∈ Z.

Lemma 6.10 ([12]). An integer a is a sextic residue modulo a prime p if and
only if it is both a quadratic and cubic residue modulo p.

Lemma 6.11. Let p ≡ 1 (mod 3) be a prime. Then 4 is a cubic residue modulo
p if and only if 2 is a cubic residue modulo p.

Proof. Let 2 be a cubic residue modulo p. Then there exists an integer x such
that x3 ≡ 2 (mod p), (x2)3 ≡ 4 (mod p). Therefore, 4 is a cubic residue
modulo p. Now let 4 be a cubic residue modulo p. Obviously, 4 is a quadratic
residue modulo p, therefore by Lemma 6.10, 4 is a sextic residue modulo p.
That is there exists an integer x such that x6 ≡ 4 (mod p) which implies that
(x3)2 ≡ 22 (mod p). Thus in view of Lemma 6.8, 2 is a cubic residue modulo
p. �

In view of the above results, we have the following result.

Theorem 6.12. 4 is a sextic residue modulo p ≡ 1 (mod 6) if and only if
p = x2 + 27y2.

Our next two results provide some sufficient conditions for a prime p =
x2 + 27y2 to be of the form 8k ± 3.

Theorem 6.13. If p = x2+27y2 is a prime, where x =

{
6l + 2, if l is odd,
6l + 4, if l is even

and y is an odd integer. Then p ≡ 3 (mod 8) and p ≡ 1 (mod 6).
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Proof. Let x = 6l + 2, where l is odd and y = 2m + 1. Then, p = (6l + 2)2 +
27(2m+ 1)2 ≡ 4l2 + 4 + 3 (mod 8). Since l2 ≡ 1 (mod 8), therefore p ≡ 3 (mod
8). Further p = (6l + 2)2 + 27(2m+ 1)2 ≡ 1 (mod 6). Similarly, if x = 6l + 4,
where l is even, and y is an odd integer. Then p ≡ 3 (mod 8) and p ≡ 1 (mod
6).

Similarly, we can have the following theorem. �

Theorem 6.14. If p = x2+27y2 is a prime, where y=

{
6l + 2, if l is even,
6l + 4, if l is odd

and x ≡ 1 or 5 (mod 6). Then p ≡ −3 (mod 8) and p ≡ 1 (mod 6).

In view of Theorems 6.7, 6.12, 6.13 and 6.14, we have the following result.

Theorem 6.15. Let p = 6f + 1. Then there are cyclotomic Q codes of length
p which are not quaternary QR codes if and only if one of the following two
sets of conditions is satisfied:{

p ≡ 13 (mod 48)
p = x2 + 27y2 for some x, y,

{
p ≡ 19 (mod 24)
p = x2 + 27y2 for some x, y.

We now present the primes p < 10000 which satisfy either of the condition
given in Theorem 6.15 and thus for which cyclocotomic Q codes of order 6
exist:

(i) p = 43, 283, 307, 499, 643, 691, 739, 811, 1051, 1339, 1459, 1579, 1627,
1699, 2179, 2203, 2251, 2731, 3163, 3331, 4339, 4651, 6091, 6427, 6451, 7867,
8059, 8419, 8419, 9811. Here p ≡ 19 (mod 24) and p = x2 + 27y2.

(ii) p = 109, 157, 229, 277, 397, 733, 1069, 1789, 2749, 2917, 3061, 3229,
3541, 4597, 4909, 5101, 5413, 5437, 5653, 5821, 6037, 6133, 6661, 6997, 7333,
7741, 8101, 8317, 8389, 8629, 8941, 9013, 9133, 9781. Here p ≡ 13 (mod 48)
and p = x2 + 27y2.

H. Tada et al. [29] proved the conjecture of Ding and Pless [12] which states
that there are infinitely many primes p such that there are binary cyclotomic
duadic codes of prime length p and order 2e with e ≥ 2 that are not quadratic
residue codes. Using the results in [12,29] we can also give partial answer to the
question that whether there are infinitely many primes p such that there are
cyclotomic Q codes of prime length p and order e at least for e = 6 that are not
quaternary/binary quadratic residue codes. For this we recall the definition of
Spl{f(x)} (for detail see [29, p. 11]) given below:

Let f(x) be a monic irreducible polynomial with integer coefficients. Re-
ducing the coefficients of f(x) modulo p, we obtain a polynomial fp(x) with
coefficients in Fp. We define Spl{f(x)} to be the set of primes such that fp(x)
factors into a set of distinct linear polynomials over Fp. Using this definition
we can rephrase Theorem 6.15 as follows:

Theorem 6.16. Let p = 6f + 1. Then there are cyclotomic Q codes of length
p which are not quaternary QR codes if and only if p ∈ Spl{x3 − 4} and
p 6∈ Spl{x2 − 2}.
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Now as discussed in [29], it can be easily seen that there are infinitely many
primes p such that p ∈ Spl{x3−4}. Further, there are infinitely many primes p
of the form 8k±3, i.e., p 6∈ Spl{x2−2}. However, it is to be seen whether there
are infinitely many primes p such that p ∈ Spl{x3−4} as well as p 6∈ Spl{x2−2}.

Conclusions.

1. Parity of cyclotomic numbers of order 2, 4 and 6 associated with 4-
cyclotomic cosets modulo an odd prime p are obtained. In our sub-
sequent paper, we will obtain parity of cyclotomic numbers of order 8
and 12.

2. Unlike the approach used in [25] we either need not to find cyclotomic
numbers or have to find a few of them to obtain the primitive idem-
potents of minimal cyclic codes of length pn over F4 for various primes
p.

3. Some orthogonal properties of the above codes are discussed.
4. We also show that a Q code of prime length is always cyclotomic like

a binary duadic code of prime length.
5. We have succeeded partially to answer the question - Whether there

exist infinite number of primes p such that there are cyclotomic Q codes
of length p and order 6 that are not binary/quaternary QR codes like
cyclotomic binary duadic codes of length p and order 6 other than
binary QR codes. Further in support of our claim, a number of primes
less than 10000 for which cyclotomic Q codes of order 6 exist have been
listed.

6. Using the approach discussed in the paper, we can obtain primitive
idempotents in the semisimple ring F2k [x]/〈xpn − 1〉 for any odd prime
p and k ≥ 1.
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