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FOUNDATIONS OF THE COLORED JONES POLYNOMIAL

OF SINGULAR KNOTS

Mohamed Elhamdadi and Mustafa Hajij

Abstract. This article gives the foundations of the colored Jones poly-

nomial for singular knots. We extend Masbum and Vogel’s algorithm [26]
to compute the colored Jones polynomial for any singular knot. We also

introduce the tail of the colored Jones polynomial of singular knots and
use its stability properties to prove a false theta function identity that

goes back to Ramanujan.

1. Introduction

The colored Jones polynomial Jn,L(q) of a link L is a sequence of Laurent
polynomials in the variable q. The label n is a positive integer which usu-
ally stands for the color. The study of the Jones polynomials and, in general,
quantum invariants have attracted much attention in the past 30 years. Partic-
ularly over the past decade, a growing interest has appeared in regards of the
coefficients of the colored Jones polynomial. The interest stems mainly from
certain stability behavior these coefficients have for adequate knots and links.
The stability of the colored Jones polynomial was first observed by Dasbach
and Lin in [10], where they showed that for an alternating link L the absolute
values of the first and last three leading coefficients of Jn,L(q) are independent
of the color n for sufficiently large values of n. This finding was used to derive
an upper bound for the volume of the complement of alternating prime non-
torus knots in terms of the leading two and last two coefficients of J2,K(q). In
the same article, Dasbach and Lin conjectured that the first n coefficients of
Jn+1,L(q) agree with the last n coefficients of Jn,L(q) for any alternating link
L. Thus, the tail of the colored Jones polynomial for such a stable sequence is
a q−series whose first n coefficients agree with the first n coefficients of Jn,L(q).
This stability was then proven for adequate knots by Armond in [2]. Further-
more, Garoufalidis and Lê [13] gave another proof for alternating knots using
different techniques. They also proved that higher order stability occurs for
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alternating knots. Lee [19] extended Armond’s result to all links and showed
that the tail of a link L is trivial if and only if L is non A-adequate. Recently,
Lee gave categorified version of her result in [19] proving a conjecture of Rozan-
sky [30] stating that the categorification of the colored Jones polynomial of a
non A-adequate link has a trivial tail homology. Other work on the stability of
the colored Jones polynomial can be found in [17] where the stability is shown
using simple skein theoretic techniques. The work of Armond and Dasbach was
then extended to the quantum spin network in [15] and [16].

One of the primary interests of these coefficients seems to be driven from
their relation to the famous Ramanujan-type q-series. One of the earliest con-
nections with the Ramanujan type q-series was observed in [18], in which the
author studied the asymptotic behaviors of the colored Jones polynomials. The
q-series associated with the colored Jones polynomial exhibits many interest-
ing properties. In fact, for many knots with small crossings, these q-series
are equal to theta functions or false theta functions. More interestingly, the
study of the tail has been used to prove Andrews-Gordon identities for the
two-variable, Ramanujan theta function in [3] and corresponding identities for
the false theta function in [16]. These two families of q-series identities were
obtained from investigating (2, p)-torus knots. For q-series techniques proving
these identities, refer to [24]. The colored Jones polynomial was extended to
singular knots using skein theory in [4]. In this paper, extended Masbum and
Vogel’s algorithm [26] to compute the colored Jones polynomial for any sin-
gular link. Furthermore, we investigate the stability of these coefficients for
certain singular torus knots and show how they can be used to prove natural
Ramanujan-type identities.

Since we want this article to be self contained we include reviews of the
necessary material for the convenience of the reader. The paper is organized as
follows: In Section 2 we give the basics of the Kauffman bracket skein module
and the colored Jones polynomial. In Section 3 we give the basics of the colored
Jones polynomial for singular links and extend Masbum and Vogel’s algorithm
[26] to compute the colored Jones polynomial for singular links. In Section 4
we compute the tail of the colored Jones polynomial of singular torus knots
and we show that this tail gives a natural Ramanujan-type q-series identity.

2. The Kauffman bracket skein module

Let M be an oriented 3-manifold. A framed link in M is an oriented em-
bedding of a disjoint union of oriented annuli in M . A framed point in the
boundary ∂M of M is a closed interval in ∂M . A band in M is an oriented
embedding of I × I into M that meets ∂M orthogonally at two framed points
x and y in ∂M .

Definition 2.1 ([27]). Let M be an oriented 3-manifold and let A be an
invertible element in a commutative ring R with a unit. Let LM denotes the
set of all isotopy classes of unoriented framed links in M . The empty link is
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considered to be an element of LM . Let RLM be the free R-module generated
by LM . Let R(M) is the submodule of RLM generated by all expressions of
the form

(1) −A −A−1 , (2) L t + (A2 +A−2)L,

where Lt is the disjoint union of a framed link L in M and the trivial
framed knot . The Kauffman bracket skein module of the 3-manifold M is
the quotient module

(2.1) S(M,R, A) = RLM/R(M).

When the context is clear, we will write S(M) instead of S(M,R, A). The
definition of the Kauffman bracket skein module can be extended to 3-manifolds
with boundaries. Let x1, . . . , x2n be a set, possibly empty, of designated framed
points on ∂M . Let LM be the set of all surfaces in M decomposed into a union
of finite number of framed links and bands joining the points {xi}2ni=1. The
relative Kauffman bracket skein module is defined to be the quotient module

(2.2) S(M,R, A, {xi}2ni=1) = RLM/R(M).

Note that the construction of the relative Kauffman bracket skein module is
functorial in the sense that an embedding of oriented 3-manifolds with 2n
(framed) points on the boundaries

(2.3) j : (M, {xi}2ni=1) ↪→ (M ′, {yi}2ni=1)

induces a homomorphism of R-modules

(2.4) S(M,R, A, {xi}2ni=1)→ S(M ′,R, A, {yi}2ni=1).

If the 3-manifold M is homeomorphic to F × I where F an oriented surface
with a finite set of points (possibly empty) in its boundary ∂F and I is an
interval, then one can project framed links in M to link diagrams in F .
It is well known ([27]) that the Kauffman bracket skein module of the 3-sphere
S3 is free on the empty link, that is S(S3) = R . Now we consider the relative
Kauffman bracket skein module of D3 = I × I × I with 2n marked points on
its boundary ∂D3. The first n points are placed on the top edge of D3 and
the other n points on the bottom edge. Recall that the relative skein module
does not depend on the exact position of the points {xi}2ni=1. However, one
needs to specify the position here in order to define an algebra structure on
S(D3,R, A, {xi}2ni=1).

Let S1 and S2 be two elements in LD3 such that ∂Sj , where j = 1, 2, consists
of the points {xi}2ni=1 that we specified above.

Define S1 × S2 to be the surface in D3 obtained by attaching S1 on the top
of S2 and then compress the result to D3. This multiplication extends to a
well-defined multiplication on S(D3,R, A, {xi}2ni=1). With this multiplication
the module S(D3,R, A, {xi}2ni=1) becomes an associative algebra over R known
as the nth Temperley-Lieb algebra TLn. The ring R will be the field Q(A)
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generated by the indeterminate A over the rational numbers through the rest
of the paper.

2.1. The Jones-Wenzl idempotents

Our invariant is defined in terms of the Jones-Wenzl idempotent (JWI).
This is an element in TLn denoted by f (n) that has played a crucial role
in the understanding of the Temperley-Lieb algebra and its applications. The
idempotent has a central role in defining the SU(2) Witten-Reshetikhin-Turaev
Invariants [22, 25, 29]. It also has a major importance in the colored Jones
polynomial and its applications [7, 15, 16, 29, 31], and quantum spin networks
[26]. The definition of the projector goes back to Jones [20]. The recursive
formula we will use here goes back to Wenzl [33]:

n

=

n− 1 1

−
(∆n−2

∆n−1

)
1n− 1

n− 2

1
n− 1

,

1

=(2.5)

where

∆n = (−1)n
A2(n+1) −A−2(n+1)

A2 −A−2
.

The idempotent satisfies the following characterizing properties:

n

=

n

,

n− i− 2

1

i

n

= 0.(2.6)

The first property is called the idempotency property of the JWI and the
second property is called the annihilation property. The JWI also satisfies the
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following:

n m

m + n

=

m + n

, ∆n =

n

(2.7)

2.2. The colored Jones polynomial

The singular knot invariant that we are studying in this paper is a gener-
alization of the colored Jones polynomial for classical knots. For this reason
we quickly review the basics of the colored Jones polynomial. Given a framed
link L in S3. We decorate every component of L, according to its framing,
by the nth Jones-Wenzl idempotent and take the evaluation of the decorated
framed link as an element of S(S3). Up to a power of ±A, this depends on
the framing of L, the value of this element is defined to be the nth (unreduced)

colored Jones polynomial J̃n,L(A). One recover the reduced Jones polynomial
by a change of variable and a division by ∆n. Namely,

(2.8) Jn+1,L(q) =
J̃n,L(A)

∆n

∣∣∣∣
A=q1/4

.

One of the primary focus of this article is the coefficients stability of an exten-
sion of the colored Jones polynomial to singular knots. We give more details
about the stability properties that the colored Jones polynomial satisfies in
Section 4.

3. Singular knots and the colored Jones polynomial

We give a quick introduction to the basics of singular knot theory. For more
details see [14] and [12]. A singular link on n components is the image of a
smooth immersion of n circles in S3 that has finitely many double points. The
double points are usually called singularities. See Figure 1.

Figure 1. Regular and singular crossings

Singular knots are also called rigid 4-valent graphs. The double points are
then referred to as vertices. Two singular knots are ambient isotopic if there
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is an orientation preserving self-homeomorphism of S3 that takes one link to
the other and preserves a small rigid disk around each vertex. In this paper we
work with singular link diagrams which are projections of the link on the plane
such that the information at each crossing is preserved by leaving a little break
in the lower strand. In this context a version of Reidemeister’s theorem holds
for singular links. Namely, two singular links L1 and L2 are ambient isotopic
if and only if one can obtain a diagram of L1 from a diagram of L2 by a finite
sequence of classical and singular Reidemeister moves shown in Figure 2.

Figure 2. Classical and singular Reidemeister moves. The
top three moves are RI, RII and RIII are the classical moves
and the bottom moves denoted RIV (two diagrams on the left)
and RV are the singular Reidemeister.

Similar to the case of classical knot theory, if one does not allow the Rei-
demeister move RI then one obtains what is called regular isotopy of singular
links.

Singular knot theory have gained a lot of interest in the past two decades.
This was primarily motivated by Vassiliev invariants [32]. In particular, most
classical knot theory invariants have been extended to the singular versions.
For instance, Fiedler [12] extended the Jones and Alexander polynomials to
singular knot invariants. In [21] Juyumaya and Lambropoulou constructed
Jones-type invariant for singular links using a Markov trace on a version of
the Hecke algebra. Gemein [14] studied certain extensions of the Artin and
the Burau representations to the singular braid monoid. Bataineh, Elhamdadi
and Hajij extended the colored Jones polynomial definition to singular knots
in [4]. Churchill, Elhamdadi, Hajij and Nelson showed that the set of colorings
by some algebraic structures is an invariant of unoriented singular links and
used it to distinguish several singular knots and links in [9]. This work was
extended to oriented singular knots in [5]. Kauffman and Vogel [23] extended
the Dubrovnik polynomial to an invariant of singular knots in R3. Kauffman
gave a one variable specialization of the Kauffman-Vogel polynomial utilizing
the Jones-Wenzl projector. We will denote this invariant by [·]2. This invariant
is defined via the following axioms:
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(1)

[ ]
2

=

22

(2)

 
2

=

1

1

11

22

22

(3)
[ ]

2
=

In [4] we gave a natural generalization for [·]2 as follows.

Definition 3.1. Let L be a singular link. For an integer n ≥ 1, the rational
function [L]2n can be defined by the following rules:

(1)

[ ]
2n

=

2n2n

(2)

 
2n

=

n

n

nn

2n2n

2n2n

(3)
[ ]

2n
= 2n

The proof that the previous three relations gives an invariant for singular
links in S2 can be done by showing that [·]2n is invariant under the singular
Reidemeister moves. The details of this proof can be found in [11]. It is clear
that the invariant [·]2n can be viewed as an extension of the unreduced colored
Jones polynomial for links in S3. Namely, for a zero-framed knot K in S3

we have J̃2n,K = [K]2n. For this reason, we will denote this invariant by the

most common notation of the unreduced colored Jones polynomial, that is J̃2n.
On the other hand, when computing the tail of the colored Jones polynomial
of singular links we prefer to work with the normalized version of the colored
Jones polynomial. We define the normalized colored Jones polynomial of a
singular link K by:

J2n+1,K(q) =
1

∆2n
[K]2n

∣∣∣∣
A=q1/4

.

This definition can be seen as an extension of the definition of the normalized
colored Jones polynomial from the classical links.
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3.1. Computing the colored Jones polynomial of singular links

In [26] Masbum and Vogel gave an algorithm to compute the colored Jones
polynomial using colored trivalent graphs. We review their algorithm and we
show how it can be extended to compute the colored Jones polynomial of
singular knots. We recall first some identities and definitions from [26].

Consider the skein module of I × I with a + b + c specified points on the
boundary. Partition the set of the a+ b+ c points on the boundary of the disk
into 3 sets of a, b and c points respectively and at each cluster of points we place
an appropriate idempotent, i.e., the one whose color matches the cardinality
of this cluster. The skein module constructed this way will be denoted by
Ta,b,c. The skein module Ta,b,c is either zero dimensional or one dimensional.
The skein module Ta,b,c is one dimensional if and only if the element shown in
Figure 3 exists. For this element to exist it is necessary to find non-negative
integers x, y and z such that a = x+ y, b = x+ z and c = y + z.

b

a

x y

z

c

Figure 3. The skein element τa,b,c in the space Ta,b,c

The following definition characterizes the existence of this skein element in
terms of the integers a, b and c.

Definition 3.2. A triple of non-negative integers (a, b, c) is admissible if a+b+c
is even and a+ b ≥ c ≥ |a− b|.

When the triple (a, b, c) is admissible, one can write x = a+b−c
2 , y = a+c−b

2 ,

and z = b+c−a
2 . In this case we will denote the skein element that generates

the space by τa,b,c. We will call the triple (a, b, c) the interior colors of τa,b,c
and the triple (x, y, z) the interior colors of τa,b,c. Note that when the triple
(a, b, c) is not admissible then the space Ta,b,c is zero dimensional.

The fact that the inside colors are determined by the outside colors allows
us to replace τa,b,c by a trivalent graph as follows:
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b

a

x y

z
cb

a

c

Figure 4. The skein element and its corresponding trivalent vertex

A colored trivalent graph in S3 is an embedded trivalent graph in S3 with
edges labeled by non-negative integers. One usually uses the word color to
refer to a label of the edge of a trivalent graph. A colored trivalent graph is
called admissible if the three edges meeting at a vertex satisfy the admissibility
condition of Definition 3.2. If D is an admissible colored trivalent graph, then
the Kauffman bracket evaluation of D is defined to be the evaluation of D as
an element in S(S2) after replacing each edge colored n by the projector f (n)

and each admissible vertex colored (a, b, c) by the skein element τa,b,c, as in
Figure 4. If a colored trivalent graph has a non-admissible vertex, then we will
consider its evaluation in S(S2) to be zero.

We will need the evaluation of the following important colored trivalent
graphs shown in Figure 5.

a b

c

d e

f

abc

Figure 5. The theta graph on the left and the tetrahedron
graph on the right.
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For an admissible triple (a, b, c), an explicit formula for the theta coefficient,
denoted θ(a, b, c), was computed in [26] and is given by:

(3.1) a b c = (−1)x+y+z [x+ y + z + 1]![x]![z]![y]!

[x+ y]![x+ z]![y + z]!

where x, y and z are the interior colors of the vertex (a, b, c). In terms of the
Pochhammer symbol the previous identity is given by

(3.2) θ(a, b, c) = (−1)x+y+zq−(x+y+z)/2 (q; q)x(q; q)y(q; q)z(q; q)x+y+z+1

(1− q)(q; q)x+y(q; q)y+z(q; q)x+z
,

where

(3.3) (q; q)n =

n−1∏
i=0

(1− qi+1).

The tetrahedron coefficient is defined to be the evaluation of the graph ap-
pearing on the right handside of Figure 5 and a formula of it can be found in
[26]. The tetrahedron graph in Figure 5 is denoted by Tet

[
a d e
f c b

]
. Besides the

previous two coefficients the following two identities hold in Ta,b,c:

b c

a

d e

f

=

Tet

[
a d e
f c b

]
θ(a, b, c)

b c

a

(3.4)

and

b c

a

= λab,c

b c

a

(3.5)

where λab,c = (−1)(a+b−c)/2A(a′+b′−c′)/2, and x′ = x(x+ 2).
Define the space Ta,b similar to the skein module Ta,b,c. Namely, this module

is the submodule of the skein module of the disk with a + b marked point on
the boundary and place the idempotents fa and f b on the appropriate sets
of points as we did for Ta,b,c. This module is also zero dimensional or one
dimensional. Using the properties of the idempotent one can see that this
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space is one dimensional if and only if a = b and zero dimensional otherwise.
In Ta,b the following identity also holds:

d

a

b c
= δda

θ(a, b, c)

∆a

a

(3.6)

We define the module of the disk D
a,b
c,d similar to the modules Ta,b,c and Ta,b.

See Figure 6 for an illustration.

a b

c d

Figure 6. The relative skein module D
a,b
c,d

Now we define the bilinear form 〈, 〉 : Da,b
c,d ×D

a,b
c,d −→ S(S2) as follows. Let

E and F be two diagrams in D
a,b
c,d. The diagram 〈E,F 〉 is an element in S(S2)

defined in Figure 7.

a

b

d

c
FE

Figure 7. The diagram 〈E,F 〉 in S(S2).

Let BH = {Ti | (a, c, i), (b, d, i) ∈ ADM} be the set of tangles defined in
Figure 8(a). It is known that this set forms an orthogonal basis for the space

D
a,b
c,d with respect to the bilinear form 〈, 〉. For more detail see [25].
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ia

c d

b

(a)

i

a

c d

b

(b)

Figure 8. (a) The element Ti in the BH (b) The element T ′i
in the BV

By symmetry, the set BV = {T ′i | (a, b, i), (c, d, i) ∈ ADM} is also a basis.
The change of basis between these two bases BH and BV is given by:

a

c d

b

j =
∑
i

{
a b i
c d j

}
i

a

c d

b

(3.7)

The previous identity is also called the recoupling identity. The coefficient{
a b i
c d j

}
is usually called the 6j-symbol. The fusion identity is given by:

ba

=
∑
i

∆a+b

θ(a, b, i)

a

a b

b

i(3.8)

The fusion identity (3.8) and identity (3.5) can be used to obtain the crossing
fusion identity :

ba

=
∑
i

∆a+b

θ(a, b, i)
λia,b

a

a b

b

i(3.9)

Let L be a singular link in S2. We want to compute the value of [L]2n =

J̃2n,L. Now J̃2n,L is a skein element in the skein module S(S2) obtained by
replacing every crossing by the right hand-side of rule (1) in Definition 3.1 and
every singular crossing by the skein element on the right hand side of rule (2)

in Definition 3.1. In order to evaluate the skein element J̃2n,L we show how
it can be realized as a linear combination of colored trivalent graphs in S(S2).
The evaluation of any colored trivalent graph in S(S2) can then by calculated
using the algorithm given in [26]. This gives us a method of computing the

evaluation of J̃2n,L for any singular link L.

The skein element J̃2n,L can be realized as a Q(A)-linear combination of
colored trivalent graphs in S(S2) as follows:
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(1) Use the crossing fusion identity to change every crossing to a Q(A)-
linear combination of trivalent graphs as in equation (3.9).

(2) Now we know that the singular crossings are replaced by the skein
element (2) in Definition 3.1. We notice that this skein element can be
realized as a trivalent graph as follows:

n

n

2n

2n 2n

2n

=

n

n

nn

2n2n

2n2n

The evaluation of any trivalent graph in S2 can be calculated by using an
algorithm that utilizes the recoupling formula and identities (3.4) and (3.6).
The details of this algorithm can be found in [26]. We give an example to

illustrate how the invariant J̃2n,L can be computed for a singular link L using
this method.

Example 3.3. To illustrate how the invariant J̃2n,L can be computed in prac-
tice we compute the example given in Figure 9. We denote this singular knot
by ST (k, l). When l = 0 we will denote this knot simply by STk.

k

l

Figure 9. Singular torus ST (k, l)

To compute the value of this invariant we first notice that for positive integers
k and n the following skien identity holds:

n

n

2n

2n 2n

2n

⊗k

=

n∑
i=0

Rn,i
2i

2n

2n 2n

2n

(3.10)

where

(3.11) Rn,i =
θ(2n, 2n, 2i)k−1

θ(n, n, 2i)k
∆2i.
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To prove identity (3.10), we apply the fusion identity to obtain:

n

n

2n

2n 2n

2n

=

n∑
i=0

∆2i

θ(n, n, 2i)

2i

2n

2n 2n

2n

=

n∑
i=0

Bn,i
2i

2n

2n 2n

2n

where

Bn,i =

Tet
[

2i n n
n 2n 2n

]
θ(2n, 2n, 2i)


2

∆2i

θ(n, n, 2i)
.(3.12)

But since

Tet

[
2i n n
n 2n 2n

]
= θ(2n, 2n, 2i),(3.13)

we obtain

Bn,i =
∆2i

θ(n, n, 2i)
.

Furthermore,

2i
2n

2n 2n

2n

⊗

 n

n

2n

2n 2n

2n
⊗k = (Pn,i)

k 2i
2n

2n 2n

2n

where

Pn,i =

Tet

[
2i 2n 2n
n n n

]
θ(n, n, 2i)

.

However,

Tet

[
2i n n
n 2n 2n

]
= Tet

[
2i 2n 2n
n n n

]
.(3.14)

Hence, both equations and (3.13) and (3.14) imply:

Pn,i =
θ(2n, 2n, 2i)

θ(n, n, 2i)

Thus, we obtain the following:

n

n2n

k copies

2n

2n2n n

n n

n



THE COLORED JONES POLYNOMIAL OF SINGULAR KNOTS 951

=

n∑
i=0

Bn,i
2i

2n

2n 2n

2n

⊗

 n

n

2n

2n 2n

2n
⊗k−1

=

n∑
i=0

Bn,i(Pn,i)
k−1 2i

2n

2n 2n

2n

Hence, (3.10) follows. Thus colored Jones polynomial of ST (k, l) is given
by:

J2n+1,ST (k,l) =
1

∆2n

n∑
i=0

θ(2n, 2n, 2i)k∆2i

θ(n, n, 2i)k
(λ2i,2n)l.

4. The tail of the colored Jones polynomial for singular knots

The study of the properties of the tail of the colored Jones polynomial have
attracted attention recently (see for instance [6,8,15,16,19]). One of the main
reasons for this is due to the fact that this tail have been proved to give rise
to Ramanujan theta and false theta identities [3, 16]. In this section we start
the investigation of the properties of the singular colored Jones polynomial and
we compute the tail of the torus singular knot STk. First, we briefly review
the basics of the head and the tail of the colored Jones polynomial. For more
details see [2, 3, 15,16].

If P1(q) and P2(q) are elements in Z[q−1][[q]], we write P1(q)
.
=n P2(q) if their

first n coefficients agree up to a sign. It was proven in [3] that the coefficients of
the colored Jones polynomial of an alternating link L stabilize in the following
sense: For every n ≥ 2, we have Jn+1,L(q)

.
=n Jn,L(q). We give the following

example to illustrate this further

Example 4.1. The colored Jones polynomial for the knot 62, up to multipli-
cation with a suitable power q±an for some integer an, is given in the following
table:

n = 2 1− 2q + 2q2 − 2q3 + 2q4 − q5 + q6

n = 3 1− 2q + 4q3 − 5q4 + 6q6 − 6q7 + 6q9 + · · ·
n = 4 1− 2q + 2q3 + q4 − 4q5 − 2q6 + 7q7 + · · ·
n = 5 1− 2q + 2q3 − q4 + 2q5 − 6q6 + 2q7 + · · ·
n = 6 1− 2q + 2q3 − q4 − 2q7 + q8 + 5q9 + · · ·
n = 7 1− 2q + 2q3 − q4 − 2q6 + 4q7 − 3q8 + 7q10 + · · ·
n = 8 1− 2q + 2q3 − q4 − 2q6 + 2q7 + 3q8 − 4q9 + · · ·

This motivated the authors of [3] to define the tail of the colored Jones poly-
nomial of a link. More precisely, define the q-series series associated with the
colored Jones polynomial of an alternating link L whose nth coefficient is the
nth coefficient of Jn,L(q). Stated differently, the tail of the colored Jones poly-
nomial of a link L is defined to be a series TL(q), that satisfies TL(q)

.
=n Jn,L(q)

for all n ≥ 1. Hence from the table above we deduce that the tail of the colored
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Jones polynomial of the knot 62 is given by:

T62(q) = 1− 2q + 0q2 + 2q3 − q4 + 0q5 − 2q6 + 2q7 + · · ·

In the same way, the head of the colored Jones polynomial of a link L is
defined to be the tail of Jn,L(q−1). In this paper we consider the tail of a
sequence of invariants of singular knots. For this reason we define the tail of a
sequence of power series in general.

Definition 4.2. Let P = {Pn(q)}n∈N be a sequence of formal power series in
Z[q−1][[q]]. The tail of the sequence P- if it exists - is the formal power series
TP in Z[[q]] that satisfies

TP(q)
.
=n Pn(q).

Next we prove and compute the tail of the colored Jones polynomial for
the singular knot STk. This is the link shown in Figure 9 with only singular
crossings.

Theorem 4.3. For k ≥ 1, we have

(4.1) TSTk
(q) = (q; q)k∞

∞∑
i=0

qi

(q; q)i
.

Proof. The colored Jones polynomial of the singular knot STk is given by:

(4.2) J2n,STk
=

1

∆2n

n∑
i=0

θ(2n, 2n, 2i)k∆2i

θ(n, n, 2i)k
.

The theorem hence follows by proving that:

J2n+1,STk
=n (q; q)k∞

∞∑
i=0

qi

(q; q)i
.

First we note that equation 3.2 implies:

(4.3)
θ(2n, 2n, 2i)

θ(n, n, 2i)
=

(−1)nq
−n
2 (q; q)2n(q; q)2n−i(q; q)2n+i+1

(q; q)22n(q; q)n−i(q; q)n+i+1
.

On the other hand,

(q; q)n
(q; q)2n

=

n−1∏
k=0

(1− qk+1)

2n−1∏
k=0

(1− qk+1)

=
1

2n−1∏
k=n

(1− qk+1)
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=

n−1∏
k=0

1

(1− qn+k+1)

.
=n 1.(4.4)

Moreover,

(q; q)2n−i+1

(q; q)n+i+1
= 1− qn+i+2 +O(n+ i+ 3)

.
=n 1(4.5)

and

(q; q)2n+i+1

(q; q)2n
= 1− q2n+1 +O(2n+ 2)

.
=n 1.(4.6)

Hence equation (4.2) becomes:
(4.7)

J2n+1,STk

.
=n

(q; q)kn
∆n

n∑
i=0

∆2i

(q; q)n−i
=

(q; q)kn
∆n

n∑
i=0

∆2i

(q; q)i

.
=n (q; q)kn

n∑
i=0

qi

(q; q)i
.

The result follows. �

The special case when k = 2 can be computed using another method that
gives rise to an interesting false theta function identity. We do this by utilizing
another method to evaluate the colored Jones polynomial of the singular knot
ST2. Using Definition 3.1 we see that [ST2]2n is equal to the evaluation of
following skein element:

[ST2]2n =
n

2n

2n

(4.8)

This can be used to show the following result.

Theorem 4.4.

(4.9) TST2

.
=n (q; q)n

n∑
i=0

qi
2+i

(q; q)2i
.

Proof. We use the bubble skein formula given in [15] on the bubble showing in
skein element on the right hand side of equation (4.8), we obtain

[ST2]2n =

n∑
i=0

⌈
n n
n n

⌉
i n + i

n + i
2n

2n

(4.10)
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=

n∑
i=0

⌈
n n
n n

⌉
i

∆2
2n

∆n+i
.(4.11)

For the definition of the coefficient

⌈
n n
n n

⌉
i

see [16] Theorem 2.4. Hence,

(4.12) J2n,STk
=

n∑
i=0

⌈
n n
n n

⌉
i

∆2n

∆n+i
.

By Lemma 4.10 part (1) of [16] we have

(4.13)

n∑
i=0

⌈
n n
n n

⌉
i

∆2n

∆n+i

.
=n (q; q)n

n∑
i=0

qi
2+i

(q; q)2i
.

The result follows. �

Theorems 4.3 and 4.4 imply immediately the following:

Corollary 4.5. The following identity holds:

(4.14) (q; q)∞

∞∑
i=0

qi
2+i

(q; q)2i
= (q; q)2∞

∞∑
i=0

qi

(q; q)i
.

The identity in Corollary 4.5 is a well-known false theta function identity.
In fact both sides are equal to Ψ(q3, q) where,

(4.15) Ψ(a, b) =

∞∑
i=0

a
i(i+1)

2 b
i(i−1)

2 −
∞∑
i=1

a
i(i−1)

2 b
i(i+1)

2 .

See for instance page 169 of [1] or see page 200 in [28]. For a recent study
of the previous identity, also related to the colored Jones polynomial, see also
the work of Bringmann and Milas in [8].

5. Conclusion

The existence of the tail of the colored Jones polynomial of singular links is
still an open question. The tail of the colored Jones polynomial of non-singular
links exists for adequate links. The question of an analogue of adequate links
in the singular case seems to be an interesting question that is worth pursuing.

Acknowledgment. We would like to thank Antun Milas for useful conversa-
tions and suggesting a correction in this paper.
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