DOI QR코드

DOI QR Code

ON A CLASS OF COMPLETE NON-COMPACT GRADIENT YAMABE SOLITONS

  • Wu, Jia-Yong (Department of Mathematics Shanghai Maritime University)
  • Received : 2017.04.06
  • Accepted : 2018.01.12
  • Published : 2018.05.31

Abstract

We derive lower bounds of the scalar curvature on complete non-compact gradient Yamabe solitons under some integral curvature conditions. Based on this, we prove that potential functions of Yamabe solitons have at most quadratic growth for distance function. We also obtain a finite topological type property on complete shrinking gradient Yamabe solitons under suitable scalar curvature assumptions.

Keywords

References

  1. E. Calabi, An extension of E. Hopf's maximum principle with an application to Riemannian geometry, Duke Math. J. 25 (1958), 45-56. https://doi.org/10.1215/S0012-7094-58-02505-5
  2. H.-D. Cao, Geometry of Ricci solitons, Chinese Ann. Math. Ser. B 27 (2006), no. 2, 121-142. https://doi.org/10.1007/s11401-005-0379-2
  3. H.-D. Cao, Recent progress on Ricci solitons, in Recent advances in geometric analysis, 1-38, Adv. Lect. Math. (ALM), 11, Int. Press, Somerville, MA, 2010.
  4. H.-D. Cao, Geometry of complete gradient shrinking Ricci solitons, in Geometry and analysis. No. 1, 227-246, Adv. Lect. Math. (ALM), 17, Int. Press, Somerville, MA, 2011.
  5. H.-D. Cao, X. Sun, and Y. Zhang, On the structure of gradient Yamabe solitons, Math. Res. Lett. 19 (2012), no. 4, 767-774. https://doi.org/10.4310/MRL.2012.v19.n4.a3
  6. H.-D. Cao and D. Zhou, On complete gradient shrinking Ricci solitons, J. Differential Geom. 85 (2010), no. 2, 175-185. https://doi.org/10.4310/jdg/1287580963
  7. G. Catino, C. Mantegazza, and L. Mazzieri, On the global structure of conformal gradient solitons with nonnegative Ricci tensor, Commun. Contemp. Math. 14 (2012), no. 6, 1250045, 12 pp.
  8. B.-L. Chen, Strong uniqueness of the Ricci flow, J. Differential Geom. 82 (2009), no. 2, 363-382. https://doi.org/10.4310/jdg/1246888488
  9. S. Y. Cheng and S. T. Yau, Differential equations on Riemannian manifolds and their geometric applications, Comm. Pure Appl. Math. 28 (1975), no. 3, 333-354. https://doi.org/10.1002/cpa.3160280303
  10. B. Chow, The Yamabe flow on locally conformally flat manifolds with positive Ricci curvature, Comm. Pure Appl. Math. 45 (1992), no. 8, 1003-1014. https://doi.org/10.1002/cpa.3160450805
  11. B. Chow, P. Lu, and L. Ni, Hamilton's Ricci flow, Lectures in Contemporary Mathe-matics 3, Science Press and American Mathematical Society, 2006.
  12. P. Daskalopoulos and N. Sesum, The classification of locally conformally flat Yamabe solitons, Adv. Math. 240 (2013), 346-369. https://doi.org/10.1016/j.aim.2013.03.011
  13. L. F. Di Cerbo and M. M. Disconzi, Yamabe solitons, determinant of the Laplacian and the uniformization theorem for Riemann surfaces, Lett. Math. Phys. 83 (2008), no. 1, 13-18. https://doi.org/10.1007/s11005-007-0195-6
  14. F. Fang, J. Man, and Z. Zhang, Complete gradient shrinking Ricci solitons have finite topological type, C. R. Math. Acad. Sci. Paris 346 (2008), no. 11-12, 653-656. https://doi.org/10.1016/j.crma.2008.03.021
  15. R. S. Hamilton, The Ricci flow on surfaces, in Mathematics and general relativity (Santa Cruz, CA, 1986), 237-262, Contemp. Math., 71, Amer. Math. Soc., Providence, RI, 1986.
  16. P. Li and S.-T. Yau, On the parabolic kernel of the Schrodinger operator, Acta Math. 156 (1986), no. 3-4, 153-201. https://doi.org/10.1007/BF02399203
  17. L. Ma and L. Cheng, Properties of complete non-compact Yamabe solitons, Ann. Global Anal. Geom. 40 (2011), no. 3, 379-387. https://doi.org/10.1007/s10455-011-9263-3
  18. L. Ma and V. Miquel, Remarks on scalar curvature of Yamabe solitons, Ann. Global Anal. Geom. 42 (2012), no. 2, 195-205. https://doi.org/10.1007/s10455-011-9308-7
  19. S. J. Zhang, On a sharp volume estimate for gradient Ricci solitons with scalar curvature bounded below, Acta Math. Sin. (Engl. Ser.) 27 (2011), no. 5, 871-882.
  20. Z.-H. Zhang, On the completeness of gradient Ricci solitons, Proc. Amer. Math. Soc. 137 (2009), no. 8, 2755-2759. https://doi.org/10.1090/S0002-9939-09-09866-9