References
- E. Calabi, An extension of E. Hopf's maximum principle with an application to Riemannian geometry, Duke Math. J. 25 (1958), 45-56. https://doi.org/10.1215/S0012-7094-58-02505-5
- H.-D. Cao, Geometry of Ricci solitons, Chinese Ann. Math. Ser. B 27 (2006), no. 2, 121-142. https://doi.org/10.1007/s11401-005-0379-2
- H.-D. Cao, Recent progress on Ricci solitons, in Recent advances in geometric analysis, 1-38, Adv. Lect. Math. (ALM), 11, Int. Press, Somerville, MA, 2010.
- H.-D. Cao, Geometry of complete gradient shrinking Ricci solitons, in Geometry and analysis. No. 1, 227-246, Adv. Lect. Math. (ALM), 17, Int. Press, Somerville, MA, 2011.
- H.-D. Cao, X. Sun, and Y. Zhang, On the structure of gradient Yamabe solitons, Math. Res. Lett. 19 (2012), no. 4, 767-774. https://doi.org/10.4310/MRL.2012.v19.n4.a3
- H.-D. Cao and D. Zhou, On complete gradient shrinking Ricci solitons, J. Differential Geom. 85 (2010), no. 2, 175-185. https://doi.org/10.4310/jdg/1287580963
- G. Catino, C. Mantegazza, and L. Mazzieri, On the global structure of conformal gradient solitons with nonnegative Ricci tensor, Commun. Contemp. Math. 14 (2012), no. 6, 1250045, 12 pp.
- B.-L. Chen, Strong uniqueness of the Ricci flow, J. Differential Geom. 82 (2009), no. 2, 363-382. https://doi.org/10.4310/jdg/1246888488
- S. Y. Cheng and S. T. Yau, Differential equations on Riemannian manifolds and their geometric applications, Comm. Pure Appl. Math. 28 (1975), no. 3, 333-354. https://doi.org/10.1002/cpa.3160280303
- B. Chow, The Yamabe flow on locally conformally flat manifolds with positive Ricci curvature, Comm. Pure Appl. Math. 45 (1992), no. 8, 1003-1014. https://doi.org/10.1002/cpa.3160450805
- B. Chow, P. Lu, and L. Ni, Hamilton's Ricci flow, Lectures in Contemporary Mathe-matics 3, Science Press and American Mathematical Society, 2006.
- P. Daskalopoulos and N. Sesum, The classification of locally conformally flat Yamabe solitons, Adv. Math. 240 (2013), 346-369. https://doi.org/10.1016/j.aim.2013.03.011
- L. F. Di Cerbo and M. M. Disconzi, Yamabe solitons, determinant of the Laplacian and the uniformization theorem for Riemann surfaces, Lett. Math. Phys. 83 (2008), no. 1, 13-18. https://doi.org/10.1007/s11005-007-0195-6
- F. Fang, J. Man, and Z. Zhang, Complete gradient shrinking Ricci solitons have finite topological type, C. R. Math. Acad. Sci. Paris 346 (2008), no. 11-12, 653-656. https://doi.org/10.1016/j.crma.2008.03.021
- R. S. Hamilton, The Ricci flow on surfaces, in Mathematics and general relativity (Santa Cruz, CA, 1986), 237-262, Contemp. Math., 71, Amer. Math. Soc., Providence, RI, 1986.
- P. Li and S.-T. Yau, On the parabolic kernel of the Schrodinger operator, Acta Math. 156 (1986), no. 3-4, 153-201. https://doi.org/10.1007/BF02399203
- L. Ma and L. Cheng, Properties of complete non-compact Yamabe solitons, Ann. Global Anal. Geom. 40 (2011), no. 3, 379-387. https://doi.org/10.1007/s10455-011-9263-3
- L. Ma and V. Miquel, Remarks on scalar curvature of Yamabe solitons, Ann. Global Anal. Geom. 42 (2012), no. 2, 195-205. https://doi.org/10.1007/s10455-011-9308-7
- S. J. Zhang, On a sharp volume estimate for gradient Ricci solitons with scalar curvature bounded below, Acta Math. Sin. (Engl. Ser.) 27 (2011), no. 5, 871-882.
- Z.-H. Zhang, On the completeness of gradient Ricci solitons, Proc. Amer. Math. Soc. 137 (2009), no. 8, 2755-2759. https://doi.org/10.1090/S0002-9939-09-09866-9