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DOMAINS WITH INVERTIBLE-RADICAL FACTORIZATION

Malik Tusif Ahmed and Tiberiu Dumitrescu

Abstract. We study those integral domains in which every proper ideal

can be written as an invertible ideal multiplied by a nonempty product

of proper radical ideals.

In [15] Vaughan and Yeagy introduced and studied the notion of SP-domain,
i.e., an integral domain whose ideals are products of radical (also called semi-
prime) ideals. They proved that an SP-domain is always almost Dedekind
(i.e., every localization at a maximal ideal is a rank one discrete valuation
domain (DVR)). They also gave an example of an SP-domain which is not
Dedekind. For examples of almost Dedekind domains which are not SP, see [16]
and [6, Example 3.4.1]. The study of SP-domains was continued by Olberding
(in [12]) who gave several characterizations for SP-domains inside the class of
almost Dedekind domains and also gave a method to construct SP-domains
starting from Boolean topological spaces.

In a sequence of papers ([10], [11], [13]) Olberding introduced and studied
the concept of ZPUI (Zerlegung Prim und Umkehrbaridealen) domain, i.e., a
domain for which every proper nonzero ideal can be factored as a product of an
invertible ideal times a nonempty product of pairwise comaximal prime ideals
(Olberding did his study for commutative rings, but we are interested here
only in domain case). He showed that a domain A is ZPUI if and only if every
proper nonzero ideal can be factored as a product of a finitely generated ideal
times a nonempty finite product of prime ideals if and only if A is a strongly
discrete h-local Prüfer domain [13, Theorem 1.1]. Let A be a domain. We
recall that A is h-local if the factor ring A/I is local (resp. semilocal) for each
nonzero prime ideal (resp. nonzero ideal) I of A. Also A is a Prüfer domain if
its nonzero finitely generated ideals are invertible. A Prüfer domain is strongly
discrete if it has no idempotent prime ideal except zero.

In this paper we study a new class of domains. Call a domain A an ISP-
domain (invertible semiprime domain) if each proper ideal of A is can be written
as an invertible ideal multiplied by a nonempty product of proper radical ideals.
So any SP-domain (resp. ZPUI-domain) is an ISP-domain.
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In Section 1 we prove the following results. If A is an ISP-domain, then any
factor domain of A and any (flat) overring of A are also ISP-domains (Propo-
sitions 2 and 3, see also Proposition 9). Any one-dimensional ISP-domain is
almost Dedekind and, consequently, any Noetherian ISP-domain is a Dedekind
domain (Corollary 4). In Section 2 we prove that if A is an ISP-domain,
then A is a strongly discrete Prüfer domain and every nonzero prime ideal
of A is contained in a unique maximal ideal (Theorem 5). Consequently, an
ISP-domain such that every ideal has finitely many minimal prime ideals is a
ZPUI-domain (Corollary 10). In Section 3 we consider the question whether
every one-dimensional ISP-domain is an SP-domain. We provide a positive
answer for domains in which every nonzero element is contained in at most
finitely many noninvertible maximal ideals (Theorem 13). In particular, a
one-dimensional ISP-domain having only finitely many noninvertible maximal
ideals is an SP-domain (Corollary 14). In Section 4 we give an example of a
two-dimensional ISP-domain A which is not h-local. Hence A is neither an
SP-domain nor a ZPUI-domain.

Throughout this paper, our rings are commutative and unitary. For any
undefined terminology, we refer the reader to [8] or [9].

1. Basic results

We recall the key definition of our paper.

Definition 1. We say that a domain A is an ISP-domain (invertible semiprime
domain) if every proper nonzero ideal I of A can be written as JQ1 · · ·Qn where
n ≥ 1, J is an invertible ideal and each Qi is a proper radical ideal.

Clearly a ZPUI-domain or an SP-domain is an ISP-domain. The well-known
Bezout domain A = Z+XQ[X] (see [4] for its basic properties) is not an ISP-
domain. Indeed, consider the ideal I = XZ[1/2] +X2Q[X]. The radical ideals
containing I are XQ[X] and nA = nZ +XQ[X] with n a positive square-free
integer. So there is no element f ∈ A such that I ⊆ fA and If−1 is a product
of radical ideals. Note that every proper nonzero principal ideal gA can be
written in the form required by Definition 1. Indeed, if g 6∈ XQ[X], then g is
a product of principal primes and if g ∈ XQ[X], then g = 2(g/2)A. Note also
that A is strongly discrete.

In this section we prove a few basic properties of ISP-domains.

Proposition 2. If A is an ISP-domain and P a prime ideal of A, then A/P
is an ISP-domain.

Proof. Let I ⊃ P be a proper ideal of A. As A is an ISP-domain, we can write
I = JH1 · · ·Hn with J an invertible ideal, n ≥ 1 and each Hi a proper radical
ideal. Since all ideals I,H1, . . . ,Hn contain P , we get

I/P = (J/P )(H1/P ) · · · (Hn/P )

with J/P invertible and each Hi/P a proper radical ideal. �
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Proposition 3. Let A be an ISP-domain and B a flat overring of A. Then B
is an ISP-domain.

Proof. Let H be a proper nonzero ideal of B and I = H ∩A. By [2, Theorem
2], IB = H. As A is an ISP-domain, we can write I = JQ1 · · ·Qn with J an
invertible ideal, n ≥ 1 and all Qi’s proper radical ideals. Then H = IB =
(JB)(Q1B) · · · (QnB), where JB is invertible and each QiB is a radical ideal.
Indeed, since AM∩A = BM for every M ∈ Max(B) (cf. [2, Theorem 2]), it is
easy to check locally that a radical ideal of A extends to a radical ideal of B.
If every QiB is equal to B, then H = JB and WB = B where W = Q1 · · ·Qn.
Hence J ⊆ JB∩A = H∩A = I = JW ⊆ J , so J = JW , thus W = A (because
J is invertible), a contradiction. �

We give a simple application of Proposition 3.

Corollary 4. Any one-dimensional ISP-domain is almost Dedekind. Conse-
quently, a Noetherian ISP-domain is a Dedekind domain.

Proof. Let A be a one-dimensional ISP-domain. By Proposition 3, we may
assume that A is local with maximal ideal M . Let x ∈ M − {0}. Since the
radical ideals of A are 0 and M , we get xA = yMk for some y ∈ A and k ≥ 1,
so M is invertible, hence A is a DVR. For the “Consequently” part, assume, by
the contrary, that A is a Noetherian ISP-domain which is not Dedekind. By
the first part, dim(A) ≥ 2, so, using Proposition 3, we may assume that A is a
two-dimensional local domain (with maximal ideal M). Let x ∈M −M2, P a
height one prime ideal containing x and let y ∈ M − P . Since P 6⊆ M2, M is
minimal over (P, y2) and A is an ISP-domain, we get (P, y2) = M . Modding
out by P , we get a contradiction. �

2. ISP domains are Prüfer strongly discrete

The following theorem is the main result of this paper.

Theorem 5. If A is an ISP-domain, then

(a) A is a strongly discrete Prüfer domain, and
(b) every nonzero prime ideal of A is contained in a unique maximal ideal.

In particular, a local domain is an ISP-domain if and only if it is a strongly
discrete valuation domain.

We need a string of three lemmas.

Lemma 6. If A is an ISP-domain and P ⊂M are nonzero prime ideals of A,
then P ⊆M2AM .

Proof. By Proposition 3, we may assume that A is local with maximal ideal
M . Assume that P 6⊆M2 and take x ∈M −P . Since A is an ISP-domain and
P 6⊆ M2, we get that (P, x2) is a radical ideal, so (P, x2) = (P, x) which gives
a contradiction after modding out by P . �
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Lemma 7. Let A be an ISP-domain, P ⊂ M prime ideals and x ∈ M − P
such that M is minimal over (P, x). Then MAM is a principal ideal.

Proof. By Proposition 3, we may assume that A is local with maximal ideal M .
We show first that M is not idempotent. On contrary assume that M2 = M .
Note that

√
(P, x) = M is the only radical ideal containing (P, x). As A is an

ISP-domain and M = M2, we get (P, x) = yM for some y ∈ A. As P ⊆ yM ,
we get y /∈ P (otherwise P = yA ⊆ yM), hence P = Py. From x ∈ yM , we get
x = yz for some z ∈M . Now from (Py, yz) = yM , we get (P, z) = M , so M/P
is a principal idempotent nonzero maximal ideal of A/P , a contradiction. Thus
M is not idempotent and let us pick w ∈ M −M2. By Lemma 6, M is the
only prime ideal containing w, so wA = M because A is an ISP-domain. �

Lemma 8. If A is an ISP-domain and I an invertible radical proper ideal of
A, then A/I is zero-dimensional.

Proof. On contrary assume that dim(A/I) ≥ 1. Then there exist two prime
ideals P ⊂M and x ∈M − P such that I ⊆ P and M is minimal over (P, x).
By Lemma 7, MAM is principal. Localizing at M , we may assume that A is
local with maximal ideal M . Then I = yA and M = zA for some y, z ∈ A.
As I ⊂ M , we get y = az2 for some a ∈ A, so az ∈

√
yA = yA, hence

y = az2 ∈ yzA, thus 1 ∈ zA = M , a contradiction. �

Proof of Theorem 5. (a) By [13, Lemma 3.2], it suffices to show that PAP is
a principal ideal for every nonzero prime ideal P of A. Set B = AP and
M = PAP . By Proposition 3, B is an ISP-domain. Given x ∈ M − {0}, we
write xB = yH1 · · ·Hn with y ∈ B, n ≥ 1 and Hi a proper radical ideal for
i = 1 to n. Then each Hi is invertible hence principal, because B is local. By
Lemma 8, we have Spec(B/H1) = {M/H1}, hence H1 =

√
H1 = M .

(b) By Proposition 3, we may assume that A is semilocal. Indeed, if M1

and M2 are two distinct maximal ideals containing a nonzero prime ideal, then
(b) fails for AS , where S = A − (M1 ∪M2). Now let I be a nonzero radical
ideal. Since A is a semilocal Prüfer domain, it follows that I has finitely many
minimal primes, say P1, . . . , Pn. Then I = P1 ∩ · · · ∩ Pn = P1 · · ·Pn because
P1, . . . , Pn are incomparable prime ideals in a Prüfer domain, hence pairwise
comaximal. Since A is an ISP-domain and every nonzero radical ideal is a
product of primes, A is a ZPUI-domain. By [13, Theorem 1.1], A is h-local, so
(b) holds. The “in particular” assertion follows from [13, Theorem 1.1]. �

We give two corollaries of Theorem 5.

Corollary 9. Any overring of an ISP-domain is also an ISP-domain.

Proof. Let A be an ISP-domain and B an overring of A. By Theorem 5, A is
a Prüfer domain, so B is A-flat, cf. [14, page 798]. Apply Proposition 3. �

Corollary 10. For a domain A, the following are equivalent.
(a) A is a ZPUI-domain.
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(b) A is an h-local strongly discrete Prüfer domain.
(c) A is an h-local ISP-domain.
(d) A is a generalized Dedekind ISP-domain.
(e) A is an ISP-domain such that Min(I) is finite for each ideal I.

Proof. (a) ⇔ (b) is a part of [13, Theorem 1.1]. Implications [(a) and (b)] ⇒
(c) ⇒ (d) ⇒ (e) are well-known. For (e) ⇒ (a), repeat the second half of the
proof of Theorem 5 part (b). �

3. Almost Dedekind ISP-domains

In this section, we consider the question whether any one-dimensional ISP-
domain is an SP-domain. First, we recall some terminology from [12]. Let A
be an almost Dedekind domain. The maximal ideals of A containing a radical
invertible ideal are called non-critical, while the others are called critical. Given
I an ideal of A and n ≥ 1, we set Vn(I) = {M ∈ Max(A) | I ⊆ Mn}. Note
that Vn+1(I) ⊆ Vn(I) and V1(I) is the usual Zariski closed set V (I). Next, we
recall [12, Theorem 2.1] and add a new assertion (g).

Theorem 11 ([12, Theorem 2.1]). For an almost Dedekind domain A, the
following assertions are equivalent.

(a) A is an SP-domain.
(b) A has no critical maximal ideals.
(c) The radical of an invertible ideal is invertible.
(d) Ever principal ideal is a product of radical ideals.
(e) For every nonzero proper (principal) ideal I and n ≥ 1, the set Vn(I)

is (Zariski) closed in Spec(A) and Vm(I) is empty for some large m.
(f) Every nonzero proper ideal I can be factorized (uniquely) as

I = J1J2 · · · Jn with radical ideals J1 ⊆ J2 ⊆ · · · ⊆ Jn.
(g) For every nonzero proper ideal I, we have I =

√
IH for some ideal H.

Proof. Since only (g) is new, it suffices to prove the equivalence of (f) and (g).

(g) ⇒ (f) We have I =
√
IH1 and H1 =

√
H1H2 for some ideals H1 and H2.

Set J1 =
√
I and J2 =

√
H1, so I = J1J2H2. From I ⊆ H1, we get J1 ⊆ J2.

Repeating, we get I = J1J2 · · · JnHn with radical ideals J1 ⊆ · · · ⊆ Jn. If some
Hn is A, we are done. If not, let M be a maximal ideal containing all Ji’s.
Then I = J1J2 · · · JnHn ⊆Mn for each n ≥ 1, which is a contradiction because
AM is a DVR. Conversely, from I = J1 · · · Jn with J1 ⊆ · · · ⊆ Jn radical ideals,
we get

√
I = J1, so we are done. �

In the next lemma, we recall two known facts.

Lemma 12. If A is an almost Dedekind domain which is not Dedekind, then

(a) Every noninvertible nonzero ideal of A is contained in some noninvert-
ible maximal ideal.

(b) Every infinite closed subset of Max(A) contains some noninvertible
maximal ideal.
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Proof. (a) is a well-known application of Zorn’s Lemma (every non finitely
generated ideal is contained in a non finitely generated prime ideal).

(b) Let I be a nonzero ideal such that V (I) is infinite. By (a), we may
assume that I is invertible, so the assertion follows from [6, Proposition 3.2.2].
We give an alternative proof. For each P ∈ V (I), we have IAP = (PAP )nP for
some (unique) positive integer nP . Consider the ideal H =

∑
P∈V (I) IP

−nP . It

suffices to show that H is not finitely generated, because I ⊆ H implies V (H) ⊆
V (I), so part (a) applies. Suppose thatH is finitely generated. Then there exist

distinct ideals P1, . . . , Pk+1 ∈ V (I) such that IP
−nk+1

k+1 ⊆
∑k
i=1 IP

−ni
i where

nj = nPj . Since the ideals Pj are mutually comaximal, we have IP
−nk+1

k+1 ⊆
I(∩ki=1P

ni
i )−1, cf. [10, Lemma 5.1]. We cancel I and get ∩ki=1P

ni
i ⊆ Pk+1,

which is a contradiction. �

Recall that a domain A has weak factorization, if every nonzero nondivisorial
ideal I can be factored as the product of its divisorial closure Iν and a finite
product of maximal ideals; i.e., I = IνM1M2 · · ·Mn where M1,M2, . . . ,Mn are
maximal ideals, cf. [5]. By [6, Proposition 4.2.14], an almost Dedekind domain
A has weak factorization if and only if every nonzero element of A is contained
in at most finitely many noninvertible maximal ideals.

Now let A be an almost Dedekind domain A which has weak factorization.
Denote by Z the set of noninvertible maximal ideals of A. We introduce an ad-
hoc concept: call an ideal H of A a clean ideal, if H is invertible, V (H) ∩ Z =
{M} and H 6⊆M2. Let M ∈ Z and f ∈M −{0}. By our hypothesis V (f)∩Z
is finite, say equal to {M,M1, . . . ,Mn}. By Prime Avoidance Lemma (e.g.
[8, Proposition 4.9]), we can pick an element g ∈M − (M2∪M1∪ · · ·∪Mn), so
(f, g) is clean. Hence every M ∈ Z contains a clean ideal. With terminology
and notation above, we have:

Theorem 13. For an almost Dedekind domain A which has weak factorization,
the following assertions are equivalent.

(a) A is an SP-domain.
(b) A is an ISP-domain.
(c) For every clean ideal H, the set V2(H) is finite.
(d) Every M ∈ Z contains a clean ideal H such that V2(H) is finite.

Proof. We may assume that A is not a Dedekind domain. Set F = Max(A)−Z.
(a)⇒ (b) is obvious. (b)⇒ (c) Assume, to the contrary, that H is a clean ideal
and V2(H) contains an infinite set {Pn | n ≥ 1} ⊆ F . Set V (H)∩Z = {M}. Let
I be the (integral) ideal

∑
n≥0HP

−1
2n+1. Since H ⊆ I and V (H)∩Z = {M}, we

get V (I) ∩ Z = {M}, because M ⊇ H = P2n+1HP
−1
2n+1 implies M ⊇ HP−12n+1.

As A is an ISP-domain, we can write I = JQ with J an invertible ideal and
Q 6= A a product of radical ideals. Since M ∈ V (I) − V2(I), we have one of
the two cases below.
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Case 1: M ⊇ J and M 6⊇ Q. Then V (Q)∩Z is empty, so Q is invertible, cf.
Lemma 12. So I = JQ is invertible, hence finitely generated. Then HP−12n+1 ⊆
HP−11 + · · · + HP−12n−1 for some n ≥ 1. Since H can be cancelled and the

other ideals involved are invertible and comaximal, we get P−12n+1 ⊆ (P1 ∩ · · · ∩
P2n−1)−1 (cf. [10, Lemma 5.1]), hence P2n+1 ⊇ P1 ∩ · · · ∩ P2n−1, which is a
contradiction.

Case 2: M 6⊇ J and M ⊇ Q. Since H ⊆ Q and H 6⊆ M2, we have that
V2(Q)∩Z = ∅. As Q is a product of radical ideals, [1, Lemma 1.10] shows that
V2(Q) is closed, so V2(Q) is finite, cf. Lemma 12. Note that P2n ∈ V2(I) for
every n ≥ 1. Consequently, there exists some m ≥ 1 such that P2n ∈ V (J) for
each n ≥ m. By Lemma 12 and the fact that H ⊆ J , we get V (J)∩Z = {M},
which is a contradiction.

(c) ⇒ (d) is clear.
(d)⇒ (a) By [12, Theorem 2.1], it suffices to show that each M ∈ Z contains

an invertible radical ideal. By (d), M contains a clean ideal H such that
V2(H) is finite, say equal to {P1, . . . , Pn}. For each i between 1 and n, we have

HAPi
= P kii APi

for some ki ≥ 2. Then HP−k11 · · ·P−knn is an invertible radical
ideal contained in M . �

The SP-domain A constructed in [12, Example 4.3] has nonzero Jacobson
radical and no M ∈ Max(A) finitely generated. Thus A does not have weak
factorization.

Corollary 14. Let A be almost Dedekind domain having only finitely many
noninvertible maximal ideals. Then A is an ISP-domain if and only if A is an
SP-domain.

Corollary 15. Let A be an ISP-domain which has weak factorization and B
a one-dimensional overring of A. Then B is an SP-domain.

Proof. By Theorem 5, A is a strongly discrete Prüfer domain, so B has weak
factorization, cf. [6, Corollary 4.3.3]. Now apply Corollary 9 and Theorem
13. �

The following question remains.

Question 16. Is every one-dimensional ISP-domain an SP-domain?

4. An example

In this final section we give an example of a two-dimensional ISP-domain A
which is not h-local. Hence A is neither an SP-domain nor a ZPUI-domain.

Proposition 17. Let C be an SP-domain but not Dedekind, M = qC a maxi-
mal principal ideal of C and D a DVR with quotient field C/M . Assume there
exists a unit p of C such that π(p) generates the maximal ideal of D, where
π : C → C/M is the canonical map. Then the pull-back domain A = π−1(D)
is a two-dimensional ISP-domain which is not h-local.
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Proof. As π(Mp−1) = 0, it follows that M ⊆ pA, so A/pA is the residue field
of D, because A/M = D and π(p) generates the maximal ideal of D. Also,
the only prime ideal of A strictly containing M is the maximal ideal pA. By
standard pull-back arguments (see for instance [7, Lemma 1.1.4]), the map
P 7→ P ∩ A is a bijection from Spec(C) − V (M) to Spec(A) − V (M) and
AP∩A = CP . By [7, Corollary 1.1.9], A is a two-dimensional Prüfer domain.
Also, by [7, Lemma 1.1.6], we have A[p−1] = C[p−1] = C. Roughly speaking,
Spec(A) is obtained from Spec(C) by adding the maximal ideal pA ⊇M . Since
C is an almost Dedekind domain which is not Dedekind, there exists a nonzero
element z ∈ A belonging to infinitely many maximal ideals of A, so A is not h-
local. By [7, Proposition 5.3.3], B = ApA is a two-dimensional strongly discrete
valuation domain. It follows that ∩t≥1ptA = M .

Let I be an ideal of A. We observe that I = IB ∩ IC. Indeed, if N ∈
Max(A)− {pA}, then I ⊆ ICA−N = IAN , so IB ∩ IC ⊆ ∩Q∈Max(A)IAQ = I.
In particular, we have A = B ∩ C. Since C is almost Dedekind and M = qC,
we can write IC = M iJ where J is an ideal of C with M + J = C and i ≥ 0,
so IC = M i ∩ J . We also see that H := J ∩A 6⊆M . As ∩t≥1ptA = M , we can
write H = pjL = pjA ∩ L where L is an ideal of A with L 6⊆ pA and j ≥ 0.
Consequently we get

IC ∩A = M i ∩ J ∩A = M i ∩H = M i ∩ pjA ∩ L

which equals either M i ∩ L if i ≥ 1 or pjA ∩ L if i = 0. Using basic facts
on valuation domains (see [8, Section 17]), it suffices to consider the following
three cases. Each time we use the equality I = (IB ∩A) ∩ (IC ∩A).

Case 1: IB = pnB for some n ≥ 0. We have IB ∩ A = pnA. If i ≥ 1, we
get I = pnA ∩M i ∩ L = M iL. If i = 0, we get I = pnA ∩ pjA ∩ L = pkL with
k = max(n, j).

Case 2: IB = Mn for some n ≥ 1. If i ≥ 1, we get I = Mn∩M i∩L = MkL
with k = max(n, i). If i = 0, we get I = Mn ∩ pjA ∩ L = MnL.

Case 3: IB = pnqmA for some m ≥ 1 and n ∈ Z. We have IB∩A = pnqmA,
because pA is the only maximal ideal containing q. If i > m ≥ 1, we get
I = pnqmA∩M i∩L = M iL. Ifm ≥ i ≥ 1, we get I = pnqmA∩M i∩L = pnqmL.
If i = 0, we get I = pnqmA ∩ pjA ∩ L = pnqmL.

Consequently, to complete our proof, it suffices to show that L is a product
of radical ideals. Since C is an SP-domain, we can write LC = H1 · · ·Hn with
each Hi a radical ideal of C. Then each Ji = Hi∩A is a radical ideal of A. Note
that none of ideals Ji is contained in pA, since L 6⊆ pA. Set R = J1 · · · Jn.
Then R + pA = A and L + pA = A, so R : p = R and L : p = L. Since
RC = H1 · · ·Hn = LC, we get L = LC ∩A = RC ∩A = R. �

Finally, we construct a specific domain satisfying the hypothesis of Propo-
sition 17. We modify appropriately [6, Example 3.4.1]. If A is a domain and
P1, . . . , Pn are prime ideals of A, we denote by AP1∪···∪Pn

the fraction ring of A
with denominators in A− (P1∪· · ·∪Pn). Let y and (xn)n≥1 be indeterminates
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over the rational field Q. Consider the domain

C =
⋃
n≥1

Q[x1, . . . , xn, y/(x1 · · ·xn)](x1)∪···∪(xn)∪(y/(x1···xn)).

As C is a union of an ascending chain of (semi-local) PID’s, it is a one-
dimensional Bezout domain. Adapting the proof of [6, Example 3.4.1], we
see that the maximal ideals of C are N =

∑
n≥1(y/(x1 · · ·xn))C and the prin-

cipal ideals (xnC)n≥1. As yCM = MCM for each M ∈ Max(C), it follows
that yC is a radical ideal, hence N is non-critical. By [12, Corollary 2.2], C
is an SP-domain. The residue field C/x1C is isomorphic to K(y/x1) where
K = Q(xn;n ≥ 2). Then D = K[y/x1](y/x1) is a DVR with quotient field
C/x1C. Note that x1 + y/x1 is a unit of Q[x1, y/x1](x1)∪(y/x1), hence a unit of
C. Moreover, the canonical map C → C/x1C sends x1 + y/x1 to y/x1 which
is a generator of the maximal ideal of D. Thus C satisfies the hypothesis of
Proposition 17.

Acknowledgements. The first author is highly grateful to Abdus Salam
School of Mathematical Sciences Govt. Coll. University Lahore in supporting
and facilitating this research. The second author gratefully acknowledges the
warm hospitality of the same institution during his visits in the period 2006-
2016.

References

[1] M. T. Ahmed and T. Dumitrescu, SP-rings with zero-divisors, Comm. Algebra 45

(2017), no. 10, 4435–4443.
[2] T. Akiba, Remarks on generalized rings of quotients, Proc. Japan Acad. 40 (1964),

801–806.

[3] D. D. Anderson, Nonfinitely generated ideals in valuation domains, Tamkang J. Math.
18 (1987), no. 2, 49–52.

[4] D. Costa, J. L. Mott, and M. Zafrullah, The construction D +XDs[X], J. Algebra 53

(1978), no. 2, 423–439.
[5] M. Fontana, E. Houston, and T. Lucas, Factoring ideals in Prüfer domains, J. Pure
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