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A CHARACTERIZATION OF n-POSETS OF LD n − k WITH

SIMPLE POSETS

Gab-Byung Chae†, Minseok Cheong, and Sang-Mok Kim

Abstract. A simple poset is a poset whose linear discrepancy increases

if any relation of the poset is removed. In this paper, we investigate
more important properties of simple posets such as its width and height

which help to construct concrete simple poset of linear discrepancy l. The
simplicity of a poset is similar to the ld-irreducibility of a poset. Hence,

we investigate which posets are both simple and ld-irreducible. Using

these properties, we characterize n-posets of linear discrepancy n− k for
k = 2, 3, and, lastly, we also characterize a poset of linear discrepancy 3

with simple posets and ld-irreducible posets.

1. Introduction

For a poset P = (X,≤P), the linear discrepancy of a poset P, denoted by
ld(P), is defined as

ld(P) = min
f∈F

max
x||y∈X

|f(x)− f(y)|,

where F is the set of all injective order preserving maps from X to integers,
and x||y denotes that x and y are incomparable in P [6].

An `-ld-irreducible poset is the poset whose linear discrepancy is ` and de-
creases by at least one if any element is removed from it. The idea of charac-
terization of posets of linear discrepancy l is as follows. The linear discrepancy
of a given poset is l if it contains no (l + 1)-ld-irreducible poset as its sub-
poset, but it contains an l-ld-irreducible poset as its subposet. This means, to
characterize posets of linear discrepancy of l, the complete lists of all l- and
(l + 1)-ld-irreducible posets should be necessarily obtained. In 2006, this char-
acterization method was firstly suggested by G.-B. Chae, M. Cheong, and S.-M.
Kim [1], in which posets of linear discrepancy 1 was characterized by providing
1- and 2-ld-irreducible posets. To characterize posets of linear discrepancy 2,
all of the 3-ld-irreducible posets of width 2 were given by D. M. Howard, G.-
B. Chae, M. Cheong, and S.-M. Kim [3], and then, together with previously
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obtained all the 2-ld-irreducible posets in [1], a characterization of posets of ld
2 was given by D. M. Howard, M. T. Keller and S. J. Young [4] in 2008, from
presenting the complete list of 3-ld-irreducible posets. However, preceding the
characterization of posets of linear discrepancy 3 and more, this method of
irreducibility does not seem to be efficient any more since the complexity for
obtaining the list of all the 4-ld-irreducible posets will rapidly increase.

In this paper, we give a general poset characterization with respect to linear
discrepancy by applying this irreducibility idea to order relations. We change
the previous irreducible point of view of a removal of an element in the poset
to that of a removal of a relation of it. This kind of irreducible poset, called
a simple poset, is defined as the n-poset whose linear discrepancy increases by
removing any relations of the poset, i.e., an (n, l)-simple poset S is the n-poset
of linear discrepancy l consisting of the smallest number of order relations
among the n-posets of linear discrepancy l. In other word, a simple poset
S of linear discrepancy l is the ‘simplest’ poset among posets of the linear
discrepancy l.

In Section 2, we first define a simple poset with the viewpoint of removal of
its order relation. And then, in order to observe simple posets efficiently, we
introduce the matrix representation of a poset, seen in [2], which has a great
benefit for observing the poset after a removal of order relations in a posets
rather than its covering graph representation, called a Hesse diagram. Next,
using this matrix representation and our previous results in [2], we express
simple posets in terms of matrix. In Section 3, we observe some basic proper-
ties of posets represented by matrices and simple posets, and then we obtain a
generalized construction of all simple n-posets with respect to individual linear
discrepancies. Finally, we give some characterizations of n-posets of linear dis-
crepancy l by simple posets, and by simple posets together with l-ld-irreducible
posets. As an application of simple posets, we give a new characterization of
n-posets of linear discrepancy n − 2 as an alternative characterization due to
S.-L. Ng [5] in 2004. Moreover, we provide a characterization of a poset of lin-
ear discrepancy (n−3) with simple posets. As a corollary of our main theorem,
we also give the first characterization of n-posets of linear discrepancy 3 by the
list of 3-ld-irreducible posets from [4] and our constructed (n, 3)-simple posets.

2. A simple poset and its matrix representation

Let P = (X,≤P) be a poset, where X has n elements. Then P is called
an n-poset. If there is no possibility of confusion, we write x ∈ P instead of
x ∈ X. For a partial order relation ≤P⊆ X × X of P, and (x, y) ∈≤P, we
write this as x ≤P y for convenience. If x ≤P y or y ≤P x, then we say that
x and y are comparable, denoted by x ⊥ y. For x and y ∈ X, the notation
x <:P y denotes that x is covered by y, and y covers x, i.e., x ≤P y, and there
is no element z in P such that x ≤P z ≤P y. If x and y are incomparable, i.e.,
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(a) (b) (c) (d)

Figure 1. Posets obtained by removing some relations from C.

(x, y) 6∈≤P and (y, x) 6∈≤P, then we write it as x‖Py. If there is no confusion,
we just write it as x‖y.

For an n-poset P, if x ⊥ y for any x and y ∈ P, then P is called a chain of
order n, written as n; however, if x‖y for any x and y ∈ P, then P is called an
antichain of order n, written as An.

Let U = (X,≤U) and V = (Y,≤V) be posets, where X ∩ Y = ∅. Then
U + V is a poset defined as

(1) X ∪ Y is a ground set of U + V,
(2) For x and y ∈ U + V, if x ≤U y or x ≤V y, then x ≤U+V y; however,

if x ∈ U and y ∈ V, then x‖y,

which is called a disjoint sum of U and V.

Remark 1. For x and y in a poset P = (X,≤P) with x ≤P y, removing the
relation (x, y) from ≤P means removing the relation (x, y) and (z, w) for all z,
w with x ≤P z ≤P w ≤P y.

Example 2. Let C = {x1 <:C x2 <:C x3 <:C x4} be a chain of order 4 as
seen in Figure 1(a). If the relation (x1, x2) is removed from C, then we have
the poset as Figure 1(b). If the relation (x2, x3) is removed, then we have the
poset as Figure 1(c). Finally, if the relation (x1, x3) is removed, then we have
the poset as Figure 1(d).

Now, we define a new class of posets which is called a simple poset. A simple
poset has a property that a removal of any relation causes to increase its linear
discrepancy. This idea is somewhat similar to the concept of ld-irreducibility.
The precise definition of a simple poset is as follows.

Definition 3. Let S = (X,≤S) be a poset with ld(S) = l and |X| = n, and S′

a poset obtained by removing any relation of S. If ld(S′) ≥ ld(S) + 1, then S
is called an (n, l)-simple (or a simple) poset. In particular, an antichain An of
order n is (n, n− 1)-simple.
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Let P be an n-poset of which ground set is X = {x1, . . . , xn}. Then we can
represent it using a n× n matrix as follows [2].

M(P) = [aij ], where aij =

{
1, if xi ≤P xj ,

0, otherwise.

Let M = [mij ]n×n and N = [nij ]n×n be n× n matrices consisting of 0 or 1,
and nij = 1 if mij = 1 in M . Then M is called a submatrix of N , denoted by
M ↪→ N .

Let P = (X,≤P) and Q = (X,≤Q) be posets on the common ground set
X, and suppose that the partial relation ≤Q contains the partial relation ≤P.
Then Q is called an extension of P.

Lemma 4. Let P = (X,≤P) and Q = (X,≤Q) be n-posets. Then, Q is an
extension of P if M(P) ↪→M(Q).

Proof. Let X = {x1, . . . , xn}, and let M(P) = [pij ]n×n and M(Q) = [qij ]n×n.
Then M(P) and M(Q) are n×n matrices since P and Q are n-posets. Suppose
that M(P) ↪→ M(Q). Then, qij = 1 if pij = 1, i.e., xi ≤Q xj if xi ≤P xj .
Therefore, Q is an extension of P. �

Let P = (X,≤P) be a poset with a ground set X = {x1, . . . , xn}, and f a
natural labeling from X to [n] = {1, 2, . . . , n} with preserving the order ≤P,
where such f is called just a labeling of P. Since a labeling f is a one-to-
one correspondence, there is f−1 : [n] → X such that f ◦ f−1 = 1[n] and

f−1 ◦ f = 1X . Constructing a matrix with P and f , we obtain a matrix

Uf
P = [uij ]n×n satisfying that

uij =

{
1, if f−1(i) ≤P f−1(j),

0, otherwise.

Then uij = 0 for j < i since f is a labeling. Hence, Uf
P is an upper triangular

matrix.
For a labeling f of a poset P, if ld(P) = max{|f(x) − f(y)| : x, y ∈

P with x‖y}}, then f is called an optimal labeling of P. In Uf
P, the maxi-

mum difference |f(x) − f(y)| for x, y ∈ P with x‖y, called the tightness of f
on P, is equal to the maximum difference |i − j| for all i, j ∈ [n] with aij = 0

in Uf
P since the indices of aij are the value of a labeling f of P represented by

Uf
P [2]. This implies that the tightness of f is the maximum distance from the

diagonal line of Uf
P to the entry which is 0. Hence, we have

ld(P) = min{max{|i− j| : aij = 0 in Uf
P} : f is a labeling of P}.

We have the following lemma about a simple poset S and its matrix represen-
tation with an optimal labeling f of S, which is shown in [2].

Lemma 5 ([2]). Let S = (X,≤S) be a poset with |X| = n and ld(S) = l. Let
f be an optimal labeling on S. Then the followings are equivalent.
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(i) S is (n, l)-simple.

(ii) Uf
S = [aij ], where

aij =

{
1 if j − i > l or i = j,

0 otherwise.

We write such Uf
S as ∇(n, l).

3. Some properties of simple posets

If two posets have the same matrix representations, then we can consider
that two posets are identical up to isomorphism. This can be summarized as
follows.

Lemma 6. For two posets P and Q with |P| = |Q|, if there exist two labelings

f of P and g of Q such that Uf
P = Ug

Q, then P and Q are identical up to
isomorphism.

Proof. Let f and g be labelings of P and Q, respectively, and suppose that

Uf
P = Ug

Q. Define h = g−1 ◦ f . Then h is a well-define map from P to Q, and

clearly one-to-one correspondence. Let x, y ∈ P with x ≤P y. Then f(x) ≤
f(y) so that the (f(x), f(y))-entry of Uf

P is 1. Since Uf
P = Ug

Q, the (f(x), f(y))-

entry of Ug
Q is 1 so that g−1(f(x)) ≤Q g−1(f(y)), i.e., h(x) ≤Q h(y). Hence, h

is order-preserving, which implies that h is an isomorphism. Therefore, P and
Q are identical up to isomorphism. �

For two positive integers n and l, let S be an (n, l)-simple poset. Then

Uf
S = ∇(n, l) for an optimal labeling f on S by Lemma 5. From Lemma 6, we

can easily obtain the following important theorem.

Theorem 7. For a positive integers n and l, there exists a unique (n, l)-simple
poset up to isomorphism.

Considering the uniqueness of a simple poset up to isomorphism, we can
write a simple poset as follows.

Notation 8. For two positive integers n and l, we write the (n, l)-simple posets
as Sl(n).

The number of elements in a maximum chain of P is called a height of P,
denoted by ht(P), and the number of elements in a maximum antichain of P
is called a width of P, denoted by width(P). The following lemmas give us the
information on the width and the height of a given simple poset with ld l and
its cardinality n.

Lemma 9. For two positive integers n and l, let S be (n, l)-simple, i.e., S =
Sl(n). Then width(S) = l + 1.
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Proof. Let S = (X,≤S) be a simple poset with a ground set X = {x1, . . . , xn}
and ld(S) = l, and f an optimal labeling of S such that f(xi) = i. Then

Uf
S = ∇(n, l) so that xi‖xj for i ∈ [n − l − 1] and j ∈ [i + 1, i + l]. However,

xi ≤S xi+l+1 for i ∈ [n − l − 1] since ld(S) = l. Hence, for i ∈ [n − l], a set
{xi, xi+1, . . . , xi+l} is an antichain, which is maximal so that width(S) ≥ l+ 1.
Moreover, ld(S) ≥ width(S)− 1, i.e., width(S) ≤ l + 1. Therefore, width(S) =
l + 1. �

Lemma 10. For two positive integers n and l, let S be (n, l)-simple, i.e.,

S = Sl(n). Then ht(S) =
⌈

n
l+1

⌉
.

Proof. For a positive integer t and a set X = {x1, . . . , xn}, let S = (X,≤S)
be the (n, l)-simple poset of height t, and f an optimal labeling of S such that
f(xi) = i. Since ld(S) = l, we have

(1) xi ≤S xi+l+1 for i ∈ [n− l − 1].

Since S is simple, we have Uf
S = ∇(n, l) so that

(2) xi‖xj for i ∈ [n− 1] and j with 0 < j − i ≤ l.

Since ht(S) = t, there is a maximal chain C of order t in S consisting of xi <:S
xi+(l+1) <:S · · · <:S xi+(t−1)(l+1) from (1) and (2). Since i + (t− 1)(l + 1) ≤ n
and t is a positive integer, we have

ht(S) = t ≤
⌊
n− i

l + 1

⌋
+ 1 ≤

⌊
n− 1

l + 1

⌋
+ 1 ≤

⌈
n

l + 1

⌉
.

Note that width(S) = l + 1 from Lemma 9. Hence, we have ht(S) ≥
⌈

n
l+1

⌉
.

Therefore, ht(S) =
⌈

n
l+1

⌉
. �

A simple poset is defined as a matrix representation. Now, we represent a
simple poset as a covering graph.

Let S = (X,≤S) be a simple poset with n elements and ld(S) = l. Since

width(S) = l + 1 and ht(S) =
⌈

n
l+1

⌉
, we can arrange all elements of S in the

ht(S)×width(S)-grid, where each intersection of lines can be an element of S,
as follows.

Theorem 11. For a positive integer n with n ≥ 3, let l be a positive integer

with l ≤ n−1, and let w = l+ 1, and h =
⌈

n
l+1

⌉
. Let X be a subset of [w]× [h]

defined as follows:

X = {(1, 1), (2, 1), . . . , (w, 1),

(1, 2), (2, 2), . . . , (w, 2),

. . . ,

(1, h), . . . , (n− (h− 1)w, h)} ⊆ [w]× [h].
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Figure 2. Comparable elements and incomparable elements
to (i, j)

Now, we define a relation ≤S on X as

(i, j) ≤S (s, t) if and only if (s− i) + (t− j)w > l

for (i, j) and (s, t) ∈ X. Then S = (X,≤S) is the (n, l)-simple poset, i.e.,
S = Sl(n).

Proof. Clearly, ≤S is a partial order so that S = (X,≤S) is a poset. Note that
(s, t)‖(i, j) for (i, j) and (s, t) in X with |(s− i)+(t− j)w| ≤ l by the definition
of the partial order ≤S. Hence, for an element (i, j) of X with i+ (j− 1)w > l,
the number of incomparable elements to (i, j) is 2l so that ld(S) ≥ l. (See
Figure 2.)

Now, we define a map f : X → [n] as

f((i, j)) = i + (j − 1)w for all (i, j) ∈ X.

Then f is clearly a labeling of S. Let a1 = (i1, j1) and a2 = (i2, j2) be elements
in X with a1‖a2. Then (i2 − i1) + (j2 − j1)w ≤ l so that ld(S) ≤ Tf (S) ≤ l.
Since ld(S) ≤ l, we have ld(S) = l, and f is optimal.

Let b1 = (m1, n1) and b2 = (m2, n2) be elements with b1 ≤S b2. Then
(m2 −m1) + (n2 − n1)w > l and m2 + (n2 − 1)w > l. Hence,

|{x ∈ X | x‖Sb2}| = 2l.
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𝑆𝑙 1

𝑆𝑙 2

𝑆𝑙 3

𝑆𝑙 4

𝑆𝑙 5

𝑆𝑙 6

𝑆𝑙 7

𝑙 =0 𝑙 = 1 𝑙 = 2 𝑙 =3 𝑙 =4 𝑙 = 5 𝑙 =6

Figure 3. Hesse diagrams of some simple posets Sl(n)

Let S′ be a poset obtained from removing relations b1 ≤S b2 and all relations
between b1 and b2. Then, since S is an extension of S′, we have ld(S′) ≥ ld(S).
Note that

|{x ∈ X | x‖S′b2}| = |{x ∈ X | x‖Sb2}|+ 1 = 2l + 1.

Hence, ld(S) ≥ l + 1 ≥ ld(S).
Therefore, S is a simple poset with ld(S) = l. �

Theorem 11 gives us how to construct a simple poset S = (X,≤S) with
|X| = n and ld(S) = l. Especially, Figure 2 shows the covering relations of an
upset of an element (i, j) in X = [h] × [w]. Also, Figure 3 gives examples of
(n, l)-simple posets constructed from Theorem 11.

4. A characterization of an n-poset with ld n − k

Let P be an n-poset with ld(P) = l. The following theorem provides the

reason why ∇(n, l) is a submatrix of Uf
P for an optimal labeling f of P, and

it can be proved easily using a matrix representation of a poset. The theorem
can be seen in [2], however, we give a detail proof as follows.
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Theorem 12. The linear discrepancy of an n-poset P = (X,≤P) is l if and
only if P is not any extension of an (n, l − 1)-simple poset but it contains an
extension of an (n, l)-simple poset.

Proof. (‘if’ part) Suppose not, i.e., ld(P) 6= l. If ld(P) < l, then there is an

optimal labeling f such that Tf (P) < l, and the optimal isotone matrix Uf
P of

P with respect to f has an element aij = 0 such that |i − j| < l, and aij = 1

for i ∈ [n] and j ≥ i + l. This implies that Uf
P has ∇(n, l − 1) as a submatrix

so that P is an extension of Sl−1(n). This is a contradiction.
If ld(P) > l, then there is i ∈ [n] such that ai, i+l+1 = 0 so that ∇(n, l) is

not a submatrix of Uf
P. Hence, P is not an extension of Sl(n), which is also a

contradiction. Therefore, if P is not an extension of Sl−1(n) but an extension
of Sl(n), then ld(P) = l.

(‘only if’ part) Suppose ld(P) = l. Then Uf
P has an element ai i+l = 0 and

no element aij = 0 for j ≥ i + l + 1 and i ∈ [n], i.e., Uf
P has ∇(n, l) and no

∇(n, l − 1) as a submatrix. Therefore, P is an extension of Sl(n) and not an
extension of Sl−1(n). �

Let An be an antichain of order n. An antichain An is a (n, n − 1)-simple
and (n− 1)-ld-irreducible poset. So, we have a question whether there are any
posets which are simple and ld-irreducible simultaneously. Fortunately, we can
easily characterize such posets, as follows.

Theorem 13. Let P be an l-ld-irreducible and (n, l)-simple poset. Then P is
an antichain of order n.

Proof. Let P be an l-ld-irreducible and (n, l)-simple poset, and suppose not,
i.e., P is not an antichain. Since P is (n, l)-simple, we have width(P) = l + 1
from Lemma 9. Hence, P has an antichain Al+1 of order (l+ 1) as a subposet.
However, since Al+1 and P are l-ld-irreducible, it is clear that P does not have
any more elements except those of Al+1, i.e., P = Al+1. This is a contradiction.
Therefore, P is an antichain. �

In 2004, S.-L. Ng gave a characterization of almost antichain posets which
are posets of ld n− 2. The following theorem is the characterization.

Theorem 14 ([5]). Let P = (X,≤P) be a poset with |X| = n ≥ 3. Then
ld(P) = n − 2 if and only if P is a disjoint union of one or more of P1, P2,
P3, P4, but P 6= P2 or P3 or 1 + · · ·+ 1, where

P1 = U ∪V, where U = {u}, V = {v1, . . . , vh}, h ≤ n− 1,

u ⊥ v1 and x ⊥ y only if x = u, y ∈ V;

P2 = 2;

P3 = 3;

P4 = 1.
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For a poset P, if ld(P) = n − 2, then P is an extension of a simple poset
of ld (n − 2), and not an extension of a simple poset of ld (n − 3), vice versa,
from Theorem 12. Hence, Theorem 14 can be rewritten using simple posets,
as follows.

Theorem 15. Let P = (X,≤P) be a poset with |X| = n ≥ 3. Then ld(P) =
n− 2 if and only if P is an extension of S1, but not an extension of S2, where

S1 = 2 + An−2;

S2 =

{
+ An−4 if n ≥ 4,

3 if n = 3.

In fact, P1, P2, and P3 in Theorem 14 are clearly extensions of S1 in
Theorem 15 but not extensions of S2 in Theorem 15. Hence, it is not difficult
to characterize a poset of ld (n−2) with respect to the linear discrepancy using
simple posets. With the same manner to Theorem 15, we can easily provide a
characterization of n-posets of ld (n− 3), as follows.

Theorem 16. Let P = (X,≤P) be a poset with |X| = n ≥ 4. Then ld(P) =
n− 3 if and only if P is an extension of S2, but not an extension of S3, where

S2 = + An−4;

S3 =


+ An−6 if n ≥ 6,

if n = 5,

4 if n = 4.

For a positive integer l, to characterize a poset of ld l with simple posets is
very simple and clear, however, one of the most difficult problems to character-
ize a poset using simple posets is to determine whether a poset is an extension
of a simple poset. If the cardinality of a poset is relatively small, we can de-
termine whether a poset is an extension of a simple poset. Otherwise, we may
have some trouble to determine. We give another method to characterize a
poset with respect to the linear discrepancy, which uses both simple posets
and ld-irreducible posets, as follows.

Theorem 17. For positive integers n and l, an n-poset P has the linear dis-
crepancy l if and only if P is an extension of Sl(n), and P has an l-ld-irreducible
poset as its subposet.

Proof. If ld(P) = l, then it is clear that P has an l-ld-irreducible poset as its
subposet, and P is an extension of Sl(n). Conversely, if an n-poset P is an
extension of Sl(n), then ld(P) ≤ l, and if P has an l-ld-irreducible poset as its
subposet, then ld(P) ≥ l. Hence, we easily obtain that ld(P) = l. �

Theorem 17 is an approach with view of both a removal of a relation of a
poset and a removal of an element of a poset. This approach may sometimes
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3S 1Q d
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Figure 4. 3-ld-irreducible posets
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3 ld of posets7 −

Figure 5. The (7, 3)-simple poset and some 7-posets of ld 3

helps us to characterize a poset with respect to linear discrepancy. For ex-
amples, this approach is a great help to characterize a poset of ld 3. Since
3-ld-irreducible posets are given in [3, 4], we are able to give the following
corollary of Theorem 17 to characterize posets of ld 3 immediately.

Corollary 18. An n-poset has linear discrepancy equal to 3 if and only if
it is an extension of an (n, 3)-simple poset S3(n), and it contains one of the
following:

(i) 1 + 1 + 1 + 1;
(ii) any poset obtained from 1 + 5 or 2 + 3 by the removal of a (possibly

empty) subset of over relations;
(iii) S3, Q1, Qd

1, or Q2; or
(iv) any member of the families I 2

3 and I 3
3 ,

where I 2
3 and I 3

3 are Howard’s infinite families described in [3], and S3, Q1,
Qd

1, or Q2 are shown in Figure 4.

For n = 4, 5, 6, and 7, the (n, 3)-simple posets in Corollary 18 can be illus-
trated as the figures below the mark l = 3 in Figure 3. The following example
shows some 7-posets of ld 3 induced from Corollary 18.
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Example 19. Figure 5 shows some 7-posets of ld 3 induced from the (7, 3)-
simple poset. In the figure, the gray solid or dashed line and gray points
represent 3-ld-irreducible posets, and dashed lines imply the relations added to
(7, 3)-simple poset.
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